MATHEMATICS AND COMPUTERS
IN SPORT

Edited by
John Hammond

; B s T cnr
E & BEANPOLE SAI

MathSport



PROCEEDINGS OF THE NINTH AUSTRALASIAN
CONFERENCE ON

MATHEMATICS AND COMPUTERS IN
SPORT

edited by

John Hammond

IM&CS

August 30" to September 3™ 2008

Tweed Heads, New South Wales, Australia

Published by MathSport (ANZIAM)
ISBN: 978-0-9578623-4-0

The papers in these proceedings have gone through a full peer review refereeing
process.



CONFERENCE DIRECTORS’ REPORT

Welcome to the ninth Australasian Conference on Mathematics and Computers in Sport. The venue
at the Twin Towns Resort is 400 metres from the venue for the 2006 (Sm) conference but is now in

New South Wales instead of Queensland. However, it will still be warm in September in northern
NSW.

One of the previous co-directors of the conference Professor John Hammond has now moved to the
United Kingdom but has acted as Scientific Director and Proceedings Editor, efficiently handling all
of your papers and putting them through the refereeing process. He had considerable assistance in
editing the proceedings from Mrs. Joan Hammond (editorial assistant) and Emeritus Professor John
Norman (editorial consultant) from Sheffield University. The latter unfortunately cannot be with us

this year because of other commitments.

In addition to wide representation from Australia, we also have delegates from Austria, Germany,
New Zealand and the United Kingdom. Our keynote principal speakers Professor Arnold Baca
(University of Vienna) and Dr Ian Renshaw (Queensland University of Technology) should provide

us with interesting insights into their research activities in sport.

The conference will be opened by Geoff Pollard, President of Tennis Australia, who is also
presenting papers. The papers are many and varied and [’'m sure you will enjoy the conference. [

hope that you gain great benefit from the programme and associated discussions.

Neville de Mestre

Professor Emeritus and Conference Director
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TRACKING MOTION IN SPORT -
TRENDS AND LIMITATIONS

Baca, Arnold

Department of Biomechanics, Kinesiology and Applied Computer Science, ZSU, University of Vienna, Austria
KEYNOTE ADDRESS

Abstract. A survey of recent developments in hard- and software for tracking the motion of athletes
and/or objects used in sport is presented. Computer vision-based systems are considered first, putting
specific focus on markerless methods for 3D-pose estimation in order to identify how the position of a
human body and the configuration of its segments change in time. Potentials and limitations will be
discussed from a biomechanics perspective mainly. The usefulness of methods from computer vision is
also outlined presenting applications utilizing feature tracking methods such as template matching to find
corresponding objects in consecutive frames. Examples from biathlon shooting and archery are given.
Object tracking methods are then discussed as very powerful tools for tracking players in game sports.
These methods are compared with such based on wireless technologies, using (electronic) transmitters
and/or receivers attached to the athlete. By applying triangulation algorithms (GPS and related systems)
or by perceiving tags on passing subjects through receivers placed on fixed positions — e. g. along a
running route — (RFID-based systems) positions may be estimated with more or less accuracy.
Applications of tracking systems based on accelerometers and gyroscopes will finally be discussed. In
addition to virtual sports, examples on their usefulness for controlling motion tasks in
prevention/rehabilitation programs will be shown. Concluding, expectations on future developments will
be given.

Keywords: markerless motion analysis, GPS, position data

INTRODUCTION

Throughout the last decades numerous systems have been developed for capturing human motion.
Kinematic information describing the motion of the centre of mass and the change of the body configuration
of athletes in time is a prerequisite for biomechanical analyses; information on the change of positions of
players in time is required for individual notational analysis and tactics analysis in game sports.

Wireless technologies are beneficial for obtaining valid motion data, since they support non-invasive
monitoring of both kinematic and positional information without affecting the athletes in executing their
motion (Armstrong, 2007). Active sensing systems operating wirelessly are therefore very popular in sports
applications. Devices are mounted on the athletes (small tags) or in the environment and transmit or receive
signals, respectively (Moestund & Granum, 2001). On the other hand, methods from computer vision, which
do not require attaching any device or markers to the athlete and/or equipment, are particularly promising.
Both, active (wireless) sensing methods and markerless video based methods provide powerful means in
tracking motion in sport, but have, however, although some drawbacks. These potentials and limitations will
be discussed in the sequel and illustrated by exemplary applications.

COMPUTER VISION BASED SYSTEMS

Video-based motion analysis systems are used in biomechanics in order to identify how a human body
and its individual limbs are configured during a motion. Using markers, the pose is defined by the 3D-
position of marker points attached to the human body. If the motion is recorded first from several cameras
and the digital videos are post-processed afterwards, a more or less long delay between motion execution and
the availability of the results must be put up with. Optoelectronic real-time motion capture systems, which



identify the image coordinates of the marker points by processors being part of the cameras, overcome this
problem.

Model based 3D-motion tracking of athletes

Using image sequences acquired simultaneously from multiple views, 3D joint data at each instant may
also be reconstructed without the use of markers. Moeslund et al. (2006) report on significant advances from
2000-2006 in reconstructing human motion either from monocular or multiple view image sequences. They
identify model based analysis-by-synthesis of human motion as a dominant methodology for human pose
estimation in these (Moeslund et al., 2006) as well as in earlier years (Moeslund & Granum, 2001). Those
kinematic pose parameters of a human body model are estimated, which result in a most similar appearance
of its synthesized shapes to the actual shapes (edges, silhouettes, contours, etc.) of the real subject in the
multi-view camera images. Figure 1 illustrates the principle. Rosenhahn et al. (2001), for example, use
silhouettes for model fitting with 21 degrees of freedom (upper part of the body only) in a 4 camera setup
and report promising results when comparing their approach with a commercial marker-based tracking
system. The geometric models for the body segments used either constructed of simple volumetric primitives
(Gavrila & Davis, 1996) or of freeform surface patches (Rosenhahn et al., 2006). Complex environments,
noise, occlusions and shading complicate tracking of human segments yielding less reliable results. Hence
most methods are applicable only under laboratory conditions.

Although a development towards almost real-time systems achieving results comparable to those from
marker-based systems can be observed, their application for analysing loads in biomechanical studies is still
Iimited. In order to estimate joint loads and joint torques, exact locations of joint centres and accurate angular
accelerations of the body segments are required. In marker-based methods markers are attached according to
certain protocols with regard to certain palpable parts of the skeleton, thus indirectly defining the location of
the joint centre. Additional (redundant) markers may be used to improve accuracy. In analysis-by-synthesis
methods there are no such means. However, there are some promising results (Corazza et al., 2007), which
give hope that this problem might be overcome in the not too far future. Even though the estimation of
angular accelerations (involving the calculation of second derivatives from angular displacement data) is also
a severe problem in marker-base methods, this may be more crucial using analysis-by-synthesis-methods,
since even more noise in the angular displacement data can be expected.

Nevertheless, such systems provide an interesting alternative for obtaining kinematics parameters (linear
and angular displacements). This is particularly the case during competitions, where no markers may be
attached. It requires, however, that the athletes are wearing tight fitting clothes.

Figure 1: Analysis-by-synthesis. Volumetric primitives representing the body segments are optimally fitted into views
from multiple cameras. Schematic view.



Feature tracking

Another approach for tracking objects in time is to identify certain features (patterns, edges, contours,
ctc.) and to detect these features in consecutive frames. Marker based analysis techniques are typical
representatives of such systems. If the colour, intensity or appearance of an object (e. g. a certain body
segment of the athlete) differs significantly from the environment, it may easily be tracked using methods
from pattern recognition such as template matching.

A colour based tracker is, for example, utilized by Mauthner, Koch, Tilp and Bischof (2007). Athletes
are tracked during a beach volleyball competition, using a single camera only. The authors report sufficient
accuracy compared to hand annotated position estimation.

Another sports-specific example from biathlon shooting (Baca & Kornfeind, 2006) shall be described in
some more detail. Coaches and athletes are interested in the motion of the barrel of the rifle just before
shooting. This is a crucial factor because of the preceding high exertions of the athletes. Commercial laser
based systems, which measure and store the hit point of the shot and the on-target trajectory of the alignment
of the weapon, require to attach a (laser) device to the rifle. A (low-cost) video-based system was therefore
developed, which does not necessitate fixing any such device or sensor onto the rifle. A video camera is set
up in a distance of about 5-7 m in front of the athlete in a laterally displaced position and records the muzzle.
The digital video is directly stored on computer disk. An application program enables the user to start and
stop the video acquisition, to specify the template containing the image of the muzzle and to track this
muzzle automatically using 2D-normalized cross correlation for template matching. Tracking is performed in
a user-selectable time interval before the shot. From the sound track recorded the instants of shooting are
estimated. Applying the results of a calibration procedure, the image coordinates obtained by the tracking
algorithm are converted to object space coordinates. Figure 2 shows an image of the barrel and the
reconstructed trajectories of the muzzle.

Figure 2: Tracking the muzzle in biathlon shooting. Left: Frame from video recording. Middle: Template to be tracked.
Right: Reconstructed trajectories (5 shots).

The system has practically been used for analysing biathletes from the Austrian Junior team (Heller et
al., 2006). Trajectories of the muzzle, which moved in a range of less than 1 mm in many cases, could well
be reconstructed and visualized graphically.

The method has successfully also been adapted for analysing the aiming process in archery.

Object tracking

Video-based observation systems have also been developed for overall tracking of subjects in game
sports (particularly in soccer). Players are viewed as single objects neglecting the motion of their body
segments (Beetz et al., 2006; Per§ & Kovaci¢, 2000). Match activities, distances covered during a game and
running speeds may be collected. Players and ball need not be equipped by any tag.



There exist a few commercial, semi-automatic systems using video camera systems (normally 8). A
sophisticated system for automatic analysis of a soccer game is proposed by Beetz et al. (2006). The video
streams of a set of TV cameras are evaluated in order to track players and ball.

However, for identifying strengths and weaknesses of players and for supplying suggestions for game
strategies, automatic processing of positional data alone is not sufficient. Moreover, methods from image
understanding have to be exploited (Beetz et al., 2005; Lames, 2008).

Both feature and object tracking methods may form the basis for automatically segmenting motions
(from individuals or teams) into (classified) actions or for categorizing or judging the motions subsequently.

GPS, RFID AND SIMILAR WIRELESS LOCATION DETECTING TECHNOLOGIES

Video based systems are limited in the observation area to be covered. GPS-based systems do not have
these restrictions and are well suited for the determination of speed and position in sport’s activities, where
athletes move along rather simple trajectories, such as in rowing, cycling, running (Townshend et al., 2008).
They provide a cheaper and easier to operate alternative to (more accurate) differential GPS (DGPS)
systems, which require a fixed reference station. Both techniques may, however, only be used outdoor under
good weather conditions and require small antennas onto the objects to be tracked.

Actual technical developments like the Leica GS20 Professional Data Mapper (total mass with battery:
0.652 kg) combined with a high precision GPS antenna (AT501) provide accuracy in position of typically 5 -
10 mm + 2 ppm (rms) and data collection of up to 20 Hz which is quite challenging for a lot of sports
applications. (cf. www.leica-geosystems.com, accessed March 25", 2008).

Active (battery powered) or passive tags transmitting radio or microwaves are also increasingly used to
compute the position of freely mobile objects within a local bounded 3D area. In contrary to GPS-based
systems, this calculation is not done on the object tracked, but in a central control unit. 3D positions are
estimated from the times an electromagnetic wave needs from light weighted tags (transponders) attached to
the objects to be tracked to a certain number of receiving stations using a triangulation method. These
stations surround the environment under investigation and are linked to the central station. Figure 3
tllustrates a schematic view of a typical system configuration. It is possible to refer to several objects (tags)
mdependently and to receive their specific position in real time. Objects may thus continuously be tracked
and identified.

Main advantages of this technique are a high spatial accuracy and a recording frequency of up to 1000
measurements per second.

Athletes or players are, however, obliged to wear special tags. Transponder-based systems are therefore
well suited for in- and outdoor training, but difficult to use in regular matches.

RFID (Radio Frequency Identification) based applications shall conclude this section. Upon activation,
small RFID-chips transmit a unique signal, which is identifiable by short distance readers. This technology
is, for example, used in marathon races. Whenever a runner wearing such a chip crosses fixed mats
throughout the race, the time is recorded.

3- AND 6-DEGREE OF FREEDOM (DOF) MOVEMENT MEASURING DEVICES

The number of degrees of freedom (DOF) refers to the different kinds of motion that a sensor is capable
of measuring. A head tracking system used in a head mounted display, for example, is a 3-DOF system with
degrees of freedom to measure roll and pitch of the head as well as to measure head rotation. A 6-DOF
system considers 3 axes of rotation and 3 axes of lateral motion. 3D-position and orientation of objects can
thereby be determined.
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Figure 3: Setup of a transponder based tracking system, consisting of one reference transponder, k measurement
transponders (tags), four receiver stations, a fiber optical network with one network node and the master processing
unit. Adapted from Fischer at al. (2003).

Such devices require several sensors, for example 3 accelerometers and 3 rotation sensors, (gyroscopes).
Changes in position are calculated from all signals measured. The devices may be small in weight and size.
Measured data may be transmitted using wireless technologies.

Virtual Sports

One very popular application of such devices lies in the arca of virtual sports. Computer-Human-
Interaction systems have already been designed for different sports. Users’ motions are captured and used as
input for controlling the virtual run in order to improve the realism and the enjoyment during the game
experience. Head, hand and body tracking devices are designed for this purpose. Nintendo’s Wii video game
console is a typical representative of systems of that kind. Accelerations in 3 dimensions of a wireless
controller are detected enabling to control the game.

Beside of using such devices for traditional 3D-motion analyses by attaching them on body segments,
they may also be applied in real-time feedback systems such as is the case in the following example.

Example: Cervical spine training

In order to objectively assess cyclic motion patterns in the region of the cervical spine different
measuring methods are applied. Heller et al. (2008) report on the development of an audio-visual feedback
system for training this region, allowing an objective estimation of the range of motion as well as a practical
application in prevention and rehabilitation.

A 3D wearable virtual reality device (see Figure 4) is used to record the motion of the head. This device
enables to track the motion of the head in 3 dimensions using gyroscopes and accelerometers. It is therefore
possible to control the motion of a mouse cursor on a monitor by moving the head (see Figure 5).

The total range of motion of the cervical spine in 3 dimensions is captured in order to individualize the
dimensions of geometrical shapes to be traced. General accepted exercises for training the cervical spine
(Dreher-Edelmann, 1997) have been integrated into the software developed. Coloured graphics of
geometrical figures (see Figure 5) are drawn on a white background for this purpose.



Figure 4: 3D wearable virtual reality device (eMagin Z800 Visor with controller) with 2 SVGA micro displays

During the motion of the head the current mouse position is checked. If it is outside the target area an
acoustic signal is given (Figure 5).

Figure S: Screenshot showing a simple tracking exercise. The mouse cursor has to be moved along the cross. If it is
outside the valid (black) area, as is the case here, a prohibit-sign is displayed.

The audio-visual feedback system is currently still under development. Upon successful completion and
verification of the test quality investigations will be performed in order to check its suitability for use in
practical preventive and rehabilitative measures.

CONCLUSION

Model based methods from computer vision provide a promising alternative for marker based methods.
In order to be applicable in outdoor sports activities, more research on their application in complex
environments is required. First steps towards biomechanical applications have also already been taken.

Video based object tracking systems and wireless technologies using active sensing systems as well as 3-
or 6-DOF sensing devices provide manifold means for tracking athletes. There is no doubt that they have the
potential to supply data for an automatic subsequent computerized detection and analysis of actions and
intentions from individual athletes and from teams.
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Abstract. The Duckworth /Lewis (D/L) method for resetting targets in rain-interrupted one-day cricket
matches has been in use for well over eleven years and has been the world standard method for most of
this time. The formula upon which it is based, giving the further runs that are obtainable on average as a
function of overs remaining and wickets down, can also be used for secondary purposes. Such usage has
the potential for enhancing interest in games and for better understanding of the progress of the two
teams. This paper discusses two facilities that would add to the value of media coverage of a game;
projection of the final score of the side batting first and monitoring the performance of the side batting
second towards its target. During the first innings, current practice of the TV broadcasting companies is
to provide a range of possible final scores based entirely on run-rates, which ignore the effects of wickets
remaining. During the second innings comparisons are made with the progress of the first-innings at
similar points, which is of interest but not, it is argued, the most relevant measure of comparison. The
paper suggests that use of the D/L methodology would provide more meaningful and valid measures of
the progress of the two teams in their respective goals, which can be presented to viewers in easy-to-grasp
graphical form. Data from several one-day-international matches are used to illustrate the suggestions.

Keywords: one-day cricket, media interest

INTRODUCTION

The Duckworth/Lewis (D/L) method of resetting target scores in rain-interrupted one-day cricket
matches was first used in 1997. In 2001, it was formally adopted by the International Cricket Council (ICC)
as the world standard and it has remained so ever since.

The principle of the method is that when a match is shortened after it has started, the target score for the
side batting second (referred to here as Team 2) is adjusted according to the run scoring resources that the
two sides have for their innings. These resources are a combination of overs to face and wickets to lose. The
methodology is fully described in Duckworth and Lewis (1998).

For the purposes of this paper we use the D/L model of average runs scored Z(u,w) in u overs
remaining when w wickets have been lost, and the model of resource percentages remaining
P(u,w)=Z(u,w)/Z(50,0) which is an expression of the percentage of the average runs scored in a standard
one-day international (ODI) innings of 50 overs and 10 wickets.

Tables provided in Duckworth and Lewis (2004) summarise the percentages in-use until 2002. In 2002,
following a review of the data from more recent one-day matches, the tables were updated to reflect changes
in the way the game was played. These tables are current and can be seen on the Internet. [http://www.icc-
cricket.com/rules/d-1_method.pdf].

To operate better in very high scoring matches, the method was upgraded in 2003. This upgrade, for
which a computer is essential for its operation, is referred to as the Professional Edition and is explained in
Duckworth and Lewis (2004). The previous manually operable version, now known as the Standard Edition,
has been retained for use where computers are not generally available, principally at lower levels of the
game.



As well as its standard uses for setting revised targets and deciding the results of prematurely terminated
matches, the D/L methodology can also be used for other purposes which have the potential for enhancing
interest in an individual game and in one-day cricket in general. The capability for implementing some of
these additional uses is already incorporated in the software for the Professional Edition. This paper
describes these additional potential uses of the D/L methodology.

PROJECTION OF TEAM 1’S FINAL SCORE

Coverage by the broadcasting media, principally TV, of one-day matches often includes projections of
Team 1’s score from around the mid-point of their innings. This is merely a linear extrapolation of the score
based on the number of overs still to be faced and is given for various assumed run rates, usually four, six or
eight runs per over, and it is left to the commentators to guess which rate is the most appropriate given the
match situation.

The projections given add very little to what the commentators, or indeed the viewers, can guess for
themselves. Their main weakness is that no account is taken of the wickets lost and hence of the real value
of the remaining overs. If many wickets are still in hand, clearly the team can take greater risks in the later
overs and attempt to achieve a higher run rate. If, however, many wickets have been lost, they will need to
exercise greater caution in order to avoid forfeiting the opportunity to make the best use of the remaining
overs available.

A single, more meaningful, projection may be made by taking account of the total run-scoring resources
remaining for the innings, and the D/L methodology provides the way of combining the contributions to
these resources of both overs remaining and wickets in hand. As the actual parameters of the formula in the
Professional Edition (Duckworth & Lewis, 2004) are not known until the innings has been completed, the
resource percentage tables used to operate the Standard Edition, which represent the average situation over
many matches, are used for this purpose. O’Riley and Ovens (2006) used the Standard Edition tables in
assessing the D/L method, and several other methods, for their ability to predict the final score.

What we propose is that we take a weighted average of the projected further runs based on the runs per
resource already experienced, and the projected further runs based on applying the remaining resources to
the prior estimate of the total score for a 50-over innings, the weighting factors being the resources used and
to come respectively.

If Team 1 starts with its full 50 overs and have scored S runs for w wickets lost, and now have « overs
left, a projection of their final total, based on their pro-rata scoring rate in relation to resources consumed

would be £} =S /[1- P(u,w)]. For instance, if after 28 overs have been bowled of a 50-over innings Team 1

have scored 110 runs for the loss of 3 wkts, the current resource table cited tells us that on average 52% of
their run scoring resources remain (a combination of 22 overs to be received and 7 wickets to lose), and an
extrapolation of this run rate per unit resource would give a projected final total of 110 x 100/52 =212,1ie.a
further 102 runs in the remaining 22 overs.

This does not, however, take into account the variable nature of a cricket innings; nor does it allow a
reliable projection to be made from an carly stage of the innings as the start may well not be an indicator of
how the innings will eventually build. [t merely assumes that the innings will carry on at the same rate of
runs per unit of resource as it has achieved so far.

An alternative extrapolation, which is guided only by what is seen on average in the remaining resources
and takes no account of the rate achieved so far, would be to apply the remaining resources to the prior 50-
over expectation (in the same way that enhanced targets are calculated in the Standard Edition) by applying
Team 2’s excess resources to the quantity called G50, this being the average 50-over total for the relevant
standard of cricket (Duckworth & Lewis, 1998 and 2004). On average Z(u,w) runs would be scored to

add to the § already scored to find the projection. Z{u,w) is easily obtained for a particular match, by
using the D/L tables, as P(u,w)Z(50,0). However, the value Z(50,0), currently 235 for ODIs, does not

have to be the basis for the average for a particularly match. It could be a different figure which takes into
account team strengths and ground conditions — what commentators may regard before the match as ‘par for



the course’. If we denote this prior value by G then the projection would be F5 =8+ P(u,w)*G . In our

example, taking G = 235, this second method of projection would give a predicted further runs of 235 x 0.52
= 122 and a projected total of 232 since there are already 110 runs on the board.

Both of these approaches are combined within our computer software by taking the two alternative
values F and F; for the further runs to be scored and weighting them relative to the resources consumed and
those remaining respectively. The rationale is that /', would be a less reliable as a predictor in the earlier
stages of an innings, with F, , a priori, a more reliable predictor in the earlier parts of an innings. As the
innings progresses, what has happened in the match will have more and more bearing on the final total than
average performance and so the weightings would reverse in importance. The weights used are the resource
percentages consumed and still remaining respectively, rather than the proportions of the overs available, as
this is consistent with the D/L’s methodology of assessing an innings according to its resources left. The
projected total is then F =[1—P(u,w)]F| + P(u,w)F,. For our example, this gives that the further runs
expected in the remaining 22 overs would be 102 with a weight of 0.48 and 122 with a weight of 0.52, giving
a combined prediction of 112, when rounding to the nearest integer. With 110 runs already on the board, the
projected 50-over total would therefore be 222.

It can easily be appreciated that this method gives a continuous projection from the start to the finish of
the innings. Before the first ball is bowled, the projection is the value chosen for G, and as the innings
progresses, it gradually takes more account of what has happened, and when the innings closes the projection
converges with the final score. This estimate of the further runs is then added to the runs already scored to
give a single projected total score. This procedure has already been incorporated into the D/L software.

We have monitored the pr-ojection during many important matches and found that it very often gives
reliable results. Of course, no method can allow for the possibility that Shahid Afridi (Pakistan) or Jacob
Oram (New Zealand) may hit 40 runs off the final two overs, but in the long run, we have found that it works
well.

Figure | gives a typical example taken from Pakistan’s innings against Australia on 19th June 2001. The
projection as the innings proceeded is shown alongside the runs scored and wickets lost, which are
represented by the small dark discs. [http://uk.cricinfo.com/db/ARCHIVE/2001/0D_TOURNEYS/
NWS/SCORECARDS/AUS PAK NWS ODI8 19JUN2001 RR-COMPARISON . html. |
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Figure I: Progressive and projected totals for Pakistan, v Australia, 19" June 2001

Figure 1 illustrates that a score of about 300 was ‘expected’ from around the 20" over although the
deviation up above 300 at around the 30" over and back again showed how Australia checked Pakistan’s
progress by the taking of several wickets in the last 20 overs.
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MONITORING TEAM 2’S PROGRESS TOWARDS THEIR TARGET

TV graphics are a fine art and have become extremely sophisticated over the years. Nevertheless, we
believe that in developing their sophistication they have sacrificed usefulness by not displaying the most
relevant quantities. The classic examples are the ‘worm’ and ‘Manhattan’ plots designed to illustrate how
the progress of Team 2’s innings compares with the way Team 1’s total accrued.

A statistic that is constantly displayed, with the same intended purpose, is the required run rate.
Commentators continually refer to this as though ‘staying up with the run rate’ were the prime objective of
the chasing side. Again, this statistic takes no account of the number of wickets that are down. For instance,
to take an extreme example to illustrate the point, it would be of little comfort for a side chasing 200 in 50
overs, who were on 120/9 after 25 overs, to be told that they were well ahead of the required run rate.

The *Manhattan’ plot is a three-dimensional [perspective] block diagram showing the runs per over. It is
visually appealing but provides very little useful guidance on how Team 2 are performing with respect to
their target.

One relevant statistic, that is displayed on the scoreboard, but is very seldom shown on TV screens, is the
D/L par score. The par score is displayed primarily to inform players and spectators alike. It is the score that
Team 2 would have to exceed to win the match in the event of the match being terminated at that point.
Team 2 would win or lose (or tie) by the number of runs they are ahead or behind (or level with) par upon
premature termination of the match. Par score schedules are available to teams and match officials, so that
teams should be aware of exactly how they stand after each ball.

But as well as indicating what would be the result if the match were to be terminated, the par score
schedule also provides a reliable indication of how Team 2 are progressing relative to their target. If they are
ahead of par, they are winning and if they are behind, they are losing. This is a much more relevant guide to
their progress than run rate compared with the rate required or than can be displayed by worms or Manhattan
plots.

To illustrate what we would propose, Figure 2 gives an example drawn from the match between South
Africa  and West Indies in the 2003 World Cup on 9 February 2003.
[http://uk.cricinfo.com/db/ARCHIVE/WORLD_CUPS/W(C2003/SCORECARDS/POOL-
B/RSA_WI_WC2003_ODI1_09FEB2003 RR-COMPARISON html]
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Figure 2: South Africa's progress relative to D/L par and West Indies’ score: World Cup 9 Feb 2003
The West Indies (WT) scored an abnormally large percentage of their 278 runs in the latter part of the
innings. Consequently, comparison of South Africa’s (SA) progressive score at a more ‘normal’ pace was

meaningless in assessing South Africa's progress in chasing the 279 to win. It shows SA always ahead of the
WI graph. A much more informative indicator would have been the comparison of SA's progress relative to
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the D/L par score, which shows SA generally behind their requirement to win and they finally lost by three
runs.

Interruptions to Team 2’s inning

When matches are interrupted then the traditional worms are totally meaningless as a means of
comparison of Team 2’s performance relative to its revised target. This will be true whether there are
interruptions in cither innings. An example of this is given in Figure 3 and relates to the match New Zealand
(NZ) v India, Jan 1999. In this match India scored 257 in their 50 overs. NZ were 168/3 in 30.4 overs when
11 overs were lost due to failed floodlights. After the restart, the D/L method reduced the target to 200 so
that the comparison of the worms was then of little meaning and the only sensible comparison was NZ’s
progress relative to the D/L par. In this particular match NZ were ahead of par at the stoppage and went on
to win the match with an over to spare.
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Figure 3: NZ’s progress relative to D/L par and India’s score: 9 Jan 1999

Clearly, if there are interruptions in Team |’s innings then comparing worms is pointless even from the
start of Team 2’s innings.

SUMMARY AND CONCLUSION

We have illustrated that there is considerable potential for the use of the D/L methodology beyond that of
its original purpose for resetting targets in interrupted one-day cricket matches. The methodology could be
used for graphical displays of the projected score for the team batting first and for the progress of the team
batting second towards its target. The challenge is to persuade the TV and marketing companies of the
benefits that can be realised from the additional uses of the Duckworth/Lewis methodology.
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Abstract. A regression-based ranking method is developed and applied to international limited-overs
cricket, using a database of matches played between September 1999 and December 2007. The structure
employed is a generalised linear model with logistic link function and beta distributed outcomes and is
used to estimate team strength parameters which in turn yield ranking scores. The outcome variable for
the regression is a newly proposed measure of the margin of victory based on the Duckworth-Lewis
methodology. The model uses Weibull weighting to discount the impact of matches played in the past and
incorporates a heteroskedastic structure to account for the potentially skewing effects of uncommonly
large victories. Finally, the model is flexible enough to allow examination of the effects of other factors
such as home ground advantage.

Keywords: Duckworth-Lewis Method, Generalised Linear Model, Relative Margin of Victory.

INTRODUCTION

Who's Number One? Sports pundits, participants and enthusiasts alike are obsessed with answering this
question and, more generally, with rankings of all kinds. Often, the methods used to arrive at the answers are
based on nothing more than “‘expert opinion™ or simple statistics such as team win-loss records. While such
subjective approaches lead to enthusiastic and revealing debate, they typically reveal more about the debaters
than the actual answer to the question of accurate rankings. Of course, the appropriateness of any ranking
system depends on the use to which the resultant ranks will be put. If the intent, as it often is, is simply to
create a kind of on-going or annual competition, the winner of which will be the best performed team in the
year, then detailed, objective methodology is perhaps less crucial and methods which are simple and intuitive
may be the best approach. However, more and more in international sports, “official” rankings are being
used for activities which involve monetary outcomes, such as seeding international tournaments, and in these
circumstances it seems important to ensure an objective ranking which is based on true team strengths.

In this paper, an objective methodology for ranking international limited-overs cricket teams is
developed. The methodology will be general enough that it may be modified to apply to other sports;
however, limited-overs cricket is a nice starting point as there are relatively few nations which play the sport
at international standard. In addition, as will be discussed in more detail subsequently, the relative margin of
victory for any match can be meaningfully defined. This latter issue is of paramount importance if an
objective ranking methodology is to be developed which incorporates all the information available in the
history of results of any given sporting competition. In particular, an objective ranking methodology should
incorporate all the information inherent in:

e The results of all matches in the competition, suitably discounted according to how long ago they
occurred;

e The inter-relationships between head-to-head results and results between common opponents when
determining relative rankings of individual teams; and,

e The relative margins of victory in matches.
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The first two of these criteria lend themselves quite nicely to a weighted regression approach, with match
results as the outcome variable, team strengths as the model parameters and weights determined according to
the amount of time elapsed since each match has been played. The final of the three criteria listed above is
crucially important from the perspective of determining rankings for the purpose of assessing true team
strength. A method based only on results would always yield the same change in rankings after incorporating
a new result regardless of the margin of victory, implying that should a very low ranked team lose to a very
high ranked team, but only by a small margin, this would have the same effect as if the lower rank team had
been defeated convincingly. While such a focus purely on result may be sensible from the perspective of a
“ranking competition”, it seems clear that if a low ranked team looses narrowly to a high ranked opponent,
this should be taken to indicate an improvement in the lower ranked team, and ought to be reflected in an
increase in standing. A methodology based solely on win-loss outcomes would, by its nature, indicate that
any loss would result in a decrease in standing.

In the remainder of the paper, a measure of relative margin of victory suitable for limited-overs cricket is
introduced, based on the famous Duckworth-Lewis methodology (1998; 2004), and a ranking based on
applying a weighted generalised linear model incorporating beta distributed errors to the victory margins is
developed and applied to a database of the results of the 12 major limited-overs cricketing nations: Australia,
Bangladesh, England, India, Ireland, Kenya, New Zealand, Pakistan, South Africa, Sri Lanka, the West
Indies and Zimbabwe. Modifications to the regression structure to incorporate various desirable features into
the ranking mechanism are also discussed. Similar methods have been investigated by de Silva et al. (2001)
as well as Clarke and Allsopp (2001) and, where appropriate, comparisons with their work are made.

A MEASURE OF VICTORY MARGIN IN LIMITED-OVERS CRICKET

Unlike many international sports, the pattern of play in limited-overs, or one-day international (ODI)
cricket does not entail each team undertaking their offensive and defensive activities in a dynamic flow
throughout the game. Instead, ODI cricket playing structure consists of two batting innings, one for each
team, played consecutively and during which the batting team compiles its score of runs. Each batting
innings continues until cither the completion of a fixed number of overs, usually fifty, or the loss of ten
wickets, or (in the case of the team batting second) the number of runs scored is sufficient to ensure victory,
whichever occurs first. This structure, whereby each tecam undertakes its entire offensive activity
contiguously, makes it particularly unique among high profile international sports and also makes a
determination of the margin of victory for a match complex. If the team batting first wins the match then,
assuming that the match was uninterrupted, the margin of victory is typically determined by the difference in
the number of runs scored by the two teams. However, if the team batting second wins, then their innings
ends as soon as they have scored enough runs, and thus their margin of victory is typically stated in terms of
either the number of wickets or the number of overs (or both) still remaining when they achieved victory.

This asymmetry in the reporting of victory margin is further compounded by the fact that the outcomes
of matches interrupted by weather or other circumstances are determined using a method developed and then
further improved by Duckworth and Lewis (1998: 2004). Fortunately, the added complication of the
Duckworth-Lewis (D/L) methodology also allows for a sensible way to develop a symmetric and practical
definition for the margin of victory in ODI matches. The essence of the D/L method is “scoring resources”.
At any stage of a batting innings, the D/L method uses both the number of overs and the number of wickets
remaining to determine the proportion of scoring resources still available. The primary use of the D/L
method is to determine the proportion of scoring resources which are lost due to interruptions, so that
appropriate comparison of scores from the two innings can be made to determine a winner. However, the
resource calculations can also help determine a margin of victory. In particular, one sensible method of
determining the margin of victory is to calculate the proportion of available resources which the winning
team did not need. In this way, the size of a victory can be determined in a symmetric fashion regardless of
whether the team batting first or the team batting second wins.

To implement this margin of victory calculation, define S, and S, to be the runs scored by the team
batting first and the team batting second, respectively. Similarly, let U/; and /> be the amount of their
available scoring resources actually utilised by each team, and let M be the total resources available to the
team batting second (the total resources available to the team batting first is always equal to U)), as

15



determined by the D/L methodology. For details of calculating resources using the D/L method, see
Duckworth and Lewis (2004); however, for clarity, note that D/L resources are calculated on a proportional
scale where unity is equivalent to the resources associated with a fifty over innings and ten available wickets,
so that in an uminterrupted match U/; and M, will always be 1 and U, will be 1 whenever the team batting first
wins (or the game is tied) and less than | whenever the team batting second wins. If the team batting second
wins the match, their margin of victory, ¥, can then be calculated as:

which is the proportionate amount of their unused resources. Alternatively, if the team batting first wins, then
the proportion of unnecessarily used resources (recall that the team batting first will always use all of its
allotted resources, as it does not know beforehand how much it will ultimately need) can be calculated as:

V= U -R&
A

where R; is the amount of resources actually needed for the team batting first to have achieved victory. To
achieve victory, the team batting first needs only to have scored more runs than the team batting second
would have scored given an equivalent amount of resources. Thus, R; is the solution to the equation:

(#)r-(2)0.
which implies R,=(S,U,*)/(S,U,).

To simplify the calculations, note that the D/L method “par score” at any point in the second innings is
the number of runs the team batting second would need to have scored to make the match a tie were it
terminated at that point. The value of the par score at the end of the second innings is readily calculated as
P=8,U,/U, (though, typically, P is rounded to the nearest whole number). Using this relationship, the victory
margin for a team batting first can be re-written as:

V= LR _ SUU; -S.UF P-5,

27 S, - r

Alternatively, if the team batting second wins, their score is equivalent to the victory target (at least
approximately, as the actual score of the team batting second may be a few runs larger than the victory
target, depending on the number of runs scored on the winning scoring stroke), which itself is essentially the
par score associated with the maximum resources available to the team batting second, S,M,/U,. Thus, it is
seen that S-~ §;M,/U, and the victory margin in the case that the team batting second wins is then given by:

yooMl _ SMSU, 8 P

M, S,M, S,

Combining the two cases yields:

=5

= 7 .
max PS8, }

Finally, for the sake of using a single value for all matches, the signed victory margin is defined as:

P-5,

1 max{P,S,} °

and will be referred to as the Relative Resource Differential (RRD). Note that D), is positive if the team
batting first wins and negative otherwise; in other words, the RRD is a margin of victory for the team batting
first, a negative value indicating the margin of their loss. For the sake of completeness, note that an
alternative measure of victory margin defined in terms of the “effective” runs differential
o~ D max . 2

has been previously proposed, debated and even employed to assess relative team strength (Clarke &
Allsopp, 2001, 2002; de Silva et al., 2001; Duckworth & Lewis, 2002). The RRD is preferred here for
modelling team strengths since it inherently adjusts for the overall scoring rate in the match. In other words,
the RRD recognises that a 50 run victory is less substantial (at least in terms of resources saved) when the
final score was 350 to 300 than when the final score was 250 to 200.
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RANKING INTERNATIONAL LIMITED-OVERS CRICKET TEAMS

To estimate the team strength of the 12 major ODI teams, a database of all results of matches between
these teams from the start of the 1999 Cricket World Cup until the end of the 2007 calendar year is
investigated. This database consists of 1066 matches and the breakdown of head-to-head games, including
the tabulation of which team batted first and which batted second, is given in Table 1.

Table |; Number of Head-to-Head ODI Matches by Team and Batting Order
(September 1999 — December 2007)

Batted Batted Second

First AUS BAN ENG IND IRE KEN NZL PAK SAF SRL WIN M
AUS - 3 10 16 0 0 24 11 18 13 15 8
BAN 9 = 7 5 0 2 6 4 5 8 4 16
ENG 15 1 - 17 2 0 8 10 7 11 6 9
IND 17 5 12 - 0 S 11 17 15 12 17 15
[RE 1 1 0 1 - 1 0 0 1 1 1 1
KEN 3 6 2 4 0 - 0 3 4 1 2

NZL 13 4 4 12 1 1 - 12 16 12 12 5
PAK 3 8 9 19 1 1 19 - 18 15 13 10
SAF 12 3 10 14 1 3 13 12 - 12 10 9
SRL 11 9 13 20 0 2 14 2 18 - 8 12
WIN 7 7 9 15 0 3 7 13 11 6 - 15
M 7 13 14 10 0 3 5 5 11 9 15 -

The small numbers of matches between some of the teams means using the inter-relationship information
contained in the outcomes of matches between common opponents is critical in accurately assessing team
strengths, and this information is directly used in a regression approach. A beta regression is employed as
described in the following, applied to the relative resource differential (RRD) values, suitably transformed to

Y =4(D,+1),

so that the outcomes take values in the unit interval. Note that ¥ values less than 0.5 correspond to losses for
the team batting first and Y values greater than 0.5 to their wins.

Weighted Logistic Regression with Beta Distributed Qutcomes

Consider a random quantity, ¥, whose outcomes are values within the unit interval. A convenient model
for the distribution of Y is given by the beta family. Specifically, the beta family consists of a collection of
distributions with support on the unit interval and probability density functions of the form:

. (¢ et o

where 77) is the gamma function, # is the expectation of the distribution and the variance is zd1—£)/(1+¢).

As such, ¢ is a measure of dispersion of the distribution, small values of ¢ corresponding to large
dispersions.

Regressions based on a generalised linear model with the beta distribution as the error structure have
been used recently in various areas (Ferrari & Cribari-Neto, 2004; Smithson & Verkuilen, 2006). To model
team strengths, a beta regression model for the RRD values, D, is employed with mean structure of the
form:

E():J‘):E{'lz([)l-.u' + l)} ==g" (v_ﬂ: _ﬂ.i)

where D, is the victory margin for a match between teams 7 and j in which team 7 bats first and g() is a
suitable /ink function. There are many possibilities for the link, the only requirements being that the function
map the unit interval to the entire real line and that it is invertible; however, the common choices are the
probit function based on the inverse of the cumulative distribution function of the standard normal
distribution, the complementary log-log function, g(x)=In{-In(l-x)}, and the logistic function
g(x)=In{x/(1-x)}. The latter is chosen for what follows for reasons discussed later. Note that, if the link is the
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identity function, the margin of victory used is the “effective” runs difference noted above and the beta error
structure is replaced by a normal error structure, the model reduces to that of de Silva et al. (2001) as well as
Clarke and Allsopp (2001) (with their “first innings advantage” parameter, 4, set to 0). As for those models,
a parameter constraint is needed here, and so the £;’s will be required to sum to zero to ensure identifiability.

Once a link function is chosen, the estimation of the parameters, f,..., fi>, ts accomplished using
maximum likelihood methodology. However, for the application here, the information associated with
matches must be discounted according to their age. In general, this can be accomplished quite simply by
defining the parameter estimates to be the maximising values of the weighted log-likelihood function:

H(Boeos Bras ) = Zl:wk m[.f‘{);_,, 2 (B, - B, ),¢}]

where iy is the team batting first in the &™ match of the dataset, j; is the team batting second and the w;’s are
suitably defined weights. While there are many possible choices for weights, for what follows a choice is
required that is based on the age of a match, Ay, and takes values of essentially unity for matches less than a
certain age and then decreases steadily until matches beyond a certain age have essentially no contribution.
One choice of weights with these features is based on the survival function of the Weibull distribution,
wi=exp(cA,?), for some choice of positive constants ¢ and d. Table 2 shows the values of the Weibull
survival function weights for different choices of the constants and matches of various ages.

Table 2: Weibull weights for matches of various ages
Age of match (in years)

Constants 1 2 3 4 5 6 7 R
c=0.01,d=4 0.990 0.852 0.445 0.077 0.002 0.000 0.000 0.000
¢ =0.005, d=6 0.995 0.726 0.026 0.000 0.000 0.000 0.000 0.000
¢ =0015, d=3 0.985 0.887 0.667 0.383 0.153 0.039 0.006 0.000

In the analysis that follows, the values ¢=0.01 and d=4 are used, which indicate that matches played within 1
year of the date on which the model is fit are given a weight of essentially unity and matches which are 5
years old or more are given essentially no weight at all. While other choices are possible, the effect on
ranking scores of varying values of ¢ and  was investigated and found to be minimal (results not presented).

A Ranking of International Limited-Overs Cricket Teams

The logistic link structure is used for the beta regression model employed here. The expected outcome
for a match in which team i bats first and team j bats second is then defined as:

L elan)
4 (A L+exp( 4, -8}

This mean structure yields values less than 0.5 if the team batting second has a larger strength parameter and
values greater than 0.5 if the team batting first has the larger strength parameter. Also, some algebra shows:
;=145 Thus, the chosen mean structure is symmetric about 0.5, as it should be in this case, as the only
difference between g4, and 44, is the order in which the teams bat, and the expected outcome should therefore
reflect that the expected RRD should simply change sign. This symmetric structure is not sustained by the
other common link choices, either the probit or the complementary log-log functions.

Once estimates of the s are obtained, they may be used to derive ranking scores and a standings table.
To do so, the expected transformed victory margin, Y, for team i against a generic opponent is used:

& _ ""p(ﬁl)
T Trew(4)

For the sake of simplicity, interpretability and comparison with other methods, these values are scaled by a
factor of 200 and then round to the nearest tenth of an integer. This means that a team whose average result
is a tie (which does not necessarily imply that they win half their games) has a ranking score of 100.

Using this ranking scheme (and the Weibull weighting according to the age of matches described
previously, with constants ¢=0.01 and ¢=4), the standings as of the end of the 2007 calendar year are:
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Table 3: ODI Team Rankings using Basic Beta Regression Model (as of 1/1/2008)

TEAM R;‘(lf('f&( ‘ ‘ TEAM Rg‘gg&(’ LU R;,‘&‘;ﬁ;"
AUSTRALIA 125.5 INDIA 108.4 BANGLADESH 834
SOUTH AFRICA 1181 ENGLAND 106.4 IRELAND 796
NEW ZEALAND 117.2 WEST INDIES 105.2 ZIMBABWE 746
SRILANKA 115.0 PAKISTAN 105.1 KENYA 63.2

Over-dispersion and the Effect of Uncommonly Large Victory Margins

A common concern raised over using margins of victory as the basis for rankings is that either a single or
relatively few unusually large wins or losses will unduly affect the team strength parameters. One way to
counteract this effect is to employ a model structure which deals not just with the mean structure, but with
the variation structure as well. If each team is assigned both a strength parameter and a volatility parameter,
then a few large victories will tend to increase the volatility parameter estimate, and thus insulate to some
degree the strength parameter from the adverse effects of uncommonly large margins.

For beta regression models, heteroskedastic structure may be incorporated using volatility parameters to
model the relationship between individual outcomes and the dispersion parameter, ¢. Specifically, the
dispersion structure for the team strength model is defined as: ;15,~j=h_1(,1/0+y,»+)§»), where y and y are the
volatility parameters for teams i and j, respectively, and A() is a suitable link function. As for the mean
structure, the volatility parameterisation requires a constraint to ensure identifiablility, so the »’s will be
required to sum to zero. The estimated strength and volatility parameters are then the values which
maximise:

bt (Broeos Bia Yor Vi Yin ) = gwk m[f (D8 (B =B,) 1 (re+7, +7, )}]

The ranking scores are determined as before, using the estimated team strength parameters, £,,...,0:,. For the
analysis here, the volatility link structure /(x) = In(x) is used. While all that is required of the volatility link
function is that it be invertible and map the positive half-line to the entire real line, the logarithmic choice is
the simplest and most common. The resultant ranking scores from fitting this model are given in Table 4.

Table 4: ODI Team Rankings using Heteroskedastic Beta Regression Model (as of 1/1/2008)

T T O I
AUSTRALIA 1249 INDIA 108.1 BANGLADESH 83.0

SOUTH AFRICA 118.4 ENGLAND 106.7 IRELAND 80.8

NEW ZEALAND 116.9 PAKISTAN 105.6 ZIMBABWE 73.8
SRI LANKA 113.5 WEST INDIES 1054 KENYA 64.6

The differences between these ranking scores and those derived from the model without heteroskedastic
structure are small; however, there is one reversal in ranking order with Pakistan moving ahead of the West
Indies. A likelihood ratio test indicates that the inclusion of heteroskedastic structure does not significantly
improve the model fit (LRS = 12.81 on 11 degrees of freedom, p-value of 0.306). Nevertheless, maintaining
it in the model is recommended so that the potential for adverse effects due to extremely large victories is
addressed. Indeed, it so happens that the last match in the dataset used for this analysis was played on
December 31, 2007 between New Zealand and Bangladesh. New Zealand won the match by bowling out
Bangladesh for 93 runs and then scoring 95 runs in 6 overs, resulting in a victory margin of D; = —-0.937, the
largest (in absolute value) of any match in the database. The changes in ranking scores under the two models,
homoskedastic and heteroskedastic, as a result of this match are shown in Table S.
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Table 5: Change in Ranking Scores as a Result of the Match on December 31, 2007
RANKING SCORE FROM BASIC MODEL. ~ RANKING SCORE FROM HETEROSKEDASTIC

MODEL
WITHOUT 31/12:07 WITH 31/12/07 MATCH WITHOUT 31/12/07 WITH 31/12/07 MATCH
MATCH MATCH
NEW 115.3 1172 115.8 1169
ZEALAND
BANGLADESH 85.4 83.4 84.5 83.0

The effect of the massive victory is moderated by the heteroskedastic volatility structure. In this sense, the
heteroskedastic structure down-weights large victories or, equivalently, gives more weight to any victory. In
other words, this new model gives a “bonus” for simply achieving victory.

DISCUSSION

The regression-based methodology described here was designed for international limited-overs cricket.
However, the structure may be applied to other sports. All that is required is a sensible definition of a relative
margin of victory. Of course, this may not be easy. Cricket is unique in many ways, and the Duckworth-
Lewis methodology made the definition of the RRD possible. Typically, cricket scores are large enough that
relative margins of victory are meaningful. By comparison, an appropriate parallel concept may be more
difficult to define in other sports. For example, in rugby, it is difficult to decide whether a 6-3 victory is more
comparable to a 60-30 victory or a 33-30 victory. Nevertheless, given an appropriate definition of relative
margin of victory, the model structure defined here will provide objective ranking scores.

The mean and volatility model structures are also flexible enough to allow inclusion of components to
address other aspects of matches which may affect outcomes and should be accounted for in assessing team
strength. For example, a factor for home ground advantage may be incorporated into the mean structure as:

H,=8 (B =B+ K5, )

where « is the home ground effect and &; = 1 if team 7 is the home team, 6; = —1 if team j is the home team
and &; = 0 if the match is played at a neutral site. Table 6 shows the ranking scores from the heteroskedastic
beta regression model including this home ground advantage factor.

Table 6: ODI Team Rankings using Heteroskedastic Model with Home Advantage (as of 1/1/2008)

N T
AUSTRALIA 1255 INDIA 107.5 BANGLADESH 832
SOUTH AFRICA 118.0 ENGLAND 106.6 IRELAND 80.3
NEW ZEALAND 117.0 PAKISTAN 1056 /IMBABWE 733
SRI LANKA 1144 WEST INDIES 105.3 KENYA 64.8

The estimated home ground advantage factor is k=0.101 (which is statistically significant, p=0.002). Clearly,
teams are aided by playing in familiar surroundings, and this ought to be accounted for when estimating team
strengths. For example, India is far more successful at home, and thus their ranking score under this new
model has decreased. Other effects of interest are readily examined in a similar way; such as, factors for the
potential effects of batting first, as in Clarke and Allsopp (2001), or winning the initial coin toss.

As noted previously, one crucial aspect of a sensible ranking system is that it is not overly affected by a
few very large victories. In other words, there should be something sacrosanct about a victory, so that the
effect on ranking of the scoring play which achieved victory is larger than for any other scoring play. To a
certain extent, the heteroskedastic structure provides this aspect. However, it may be the case that more is
needed. One way of including such an aspect into the model is the use of modified or penalised likelithood,
which could give increased likelihood to the larger parameters even in the case of a relatively narrow victory.

Finally, in closing, a comparison is made between the rankings developed here and the official ICC ODI
rankings, based on a method developed by David Kendix. Details of the Kendix method can be found on the
ICC’s web-site (www.icc-cricket.com); essentially, though, the method is based on awarding “ranking
points™ to each team involved in a given match, and then creating a standings table based on teams’ average
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ranking points per match. Relative-team strengths are incorporated in the Kendix method by allowing the
ranking points awarded for any match to depend on the current ranking of the opponents, so that defeating a
lower ranked opponent provides fewer ranking points than defeating a higher ranked opponent. The
weighting of matches based on age is accomplished by giving full weight to any match which occurs
between the ranking date and the preceding August 1%, half weight to any match which occurs in the 12
months prior to the preceding August 1* and one-quarter weight to matches occurring in the 12 months prior
to that. The Kendix method does not account for margins of victory in its ranking procedure. The major
benefit of the Kendix method is its relative simplicity. Its calculation scheme makes it simple to see how the
outcome of any match will affect the rankings. By comparison, the method developed here makes the effect
of the outcome of a single match less obvious (though, simply fitting the model with and without the result
of the match in question will clearly indicate its ultimate effect on the rankings). Moreover, for the Kendix
method, the result of any match only affects the ranking points of the two teams involved, whereas the
regression-based rankings allow the outcome of any match to potentially affect the entire ranking table, as it
fully incorporates the “common opponent” information that each result entails. Also, the smoothly varying
weightings provided by the Weibull survival function structure avoids the discontinuity associated with the
method employed by the Kendix rankings, which may lead to notable shifts in team rankings each August.
The ICC ODI ranking table at the end of the 2007 calendar year is given in Table 7 below.

Table 7: Official ICC ODI Team Rankings (as of 1/1/2008)

TEAM R;‘g(l)(l‘&(’ ‘ ’ TEAM Rf&‘fllgc TEAM Rﬁ&ﬁ;ﬁ
AUSTRALIA 130 SRI LANKA 108 BANGLADESH 47
SOUTH AFRICA 124 . PAKISTAN 107 IRELAND 28
NEW ZEALAND 12 ENGLAND 107 ZIMBABWE 20
INDIA 110 WEST INDIES 100 KENYA 0

The team ordering is in close agreement with the results presented here. However, the gaps between the
ranking scores are noticeably different. New Zealand is nearer South Africa in the rankings presented here
and Ireland is nearer Bangladesh, and both are nearer the West Indies. The difference in rankings at the
lower end of the table is partly a reflection of the fact that these teams play less frequently and the Kendix
method uses only matches which are no more than three years old. In addition, investigation of the effect of
individual matches indicates that the Kendix method is more volatile in its ranking scores, and the outcome
of a few matches can make dramatic changes to the ranking scores, which is ironic given that margins of
victory were not included in the method in part because of their perceived potential for just such an effect.
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Abstract. One-Day International cricket (ODI) is a popular sport worldwide. The advent of the Internet
has increased opportunities for punters to wager on differing outcomes associated with each match, with
one outcome of interest being the number of runs scored per over. Using information gathered from 627
past ODI matches (55000 overs), specific ‘within match’ and ‘between match’ variables were identified
and explored to determine the statistical significance of their relationship with the number of runs scored.
Separate models were constructed for both first and second innings with ten first-order variables and four
second-order variables found to be highly significantly related to runs per over in both innings with a p-
value less than 0.0001. These variables inctude the number of overs bowled, the stage of the game, the
number of wickets fallen, recent wickets fallen, the magnitude of the existing partnership, current run
rates, host country, team batting strength and opposition bowling strength. A multivariate linear
regression model was used to combine and weight the relative importance of all variables with goodness
of fit determined using the absolute average error between predicted and actual results, the maximum log-
likelihood and an R-square statistic. This process serves to ascertain and rank the relative importance of
various predictors and shed some light on the predictability of runs per over in ODI cricket.

Keywords: Predictors of runs scored, ODI Cricket, Linear Regression

INTRODUCTION

The first official one-day international (ODI) match was played in 1971 between Australia and England
at the Melbourne Cricket Ground. Whilst ODI cricket has developed over the past 37 years, the general
principles have remained the same. Both sides bat once for a limited time (maximum 50 overs) with the aim
in the first innings to score as many runs as possible, and in the second innings to score more than the target
set in the first innings.

As an international sport that has been in existence for over 100 years, it is of little surprise that much
has been written on the topic of cricket. Clarke (1998) contains a summary of the work done on cricket up to
that time, including that on distribution of scores. The first published work on cricket by Elderton and
Elderton (1909) was also one of the first published bodies of work on statistical methods. Wood (1941, 1945)
and Elderton (1945) investigated if the distribution of batsman scores in test cricket was geometric. They
found an cxcess of very small and very large scores. Reep et al. (1971) and Pollard et al. (1977) explored
whether a negative binomial distribution may in fact be a more appropriate fit to the distribution of batsmen
scores. Kimber and Hansford (1993) found that apart from a greater risk in the early part of the innings, the
chance of dismissal is reasonably constant throughout the innings.

Statisticians have more recently turned their attention to one-day cricket. Using batting records of only a
few batsmen, Clarke (1991) found that the observed frequency of very small and very large scores were
actually less in ODI cricket than expected by a geometric distribution. Increasing availability of data has
resulted in several studies for different purposes. With a view to developing fair rain interruption rules,
Duckworth and Lewis (1998, 2004) investigate the expected team scores in the remainder of a ODI innings
as a function of overs left and wickets remaining. Alternative approaches to the same problem are taken by
de Silva et al. (2001) and Gray and Le (2002). With the aim of forecasting individual batsman’s scores,
Bailey and Clarke (2004) found that the fielding restrictions and time constraints of ODI matches combined



to ensure that the distribution of batsmen scores in ODI cricket could be reasonably well approximated by a
log-Normal distribution, whilst comparisons made between batsmen could still be achieved using a
geometric approach. Whilst much has been done to investigate the scores made by batsmen and teams there
1s no work to date relating to the prediction of runs scored per over (RPO).

BACKGROUND

Prior to February 2004, 2100 official ODI matches had been played between 20 competing
countries. Although match results and player information is available for all matches played,
information at an individual over level has only become available in recent years, and has been
collected for 627 matches, creating a database of 55,000 overs. Although the actual number of runs
scored per over clearly does not follow a Normal distribution (see Figure 1A), the enormity of the
database used allows for some practical benefit to be gained by using a parametric approach to
determine prediction variables.
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Figure 1A and IB: Histograms of runs and plot of average runs scored for each over

PREDICTIVE FACTORS FOR RUNS PER OVER (RPO)

Prediction variables can be readily divided into ‘within match’ and ‘between match’ variables. Not
surprisingly, significantly more variation occurs within games than between games. Within game factors that
impact on RPO include innings number, over number, wickets fallen, duration of current partnership, scoring
rate for the previous five overs, wicket fallen in the last over, run rate from the same end and best bowler.
Between match variables include the location of the ground and the quality of both the competing teams.

Innings Number

More runs are scored per over by the team batting first than by the team batting second (1* inning
4.80:£0.02 vs. 2™ inning 4.66+0.02, p<0.0001). This may not necessarily mean that runs are easier to score in
the first innings. The constraints imposed upon batsmen in the second inning are different to that of the first.
In the first inning a batsmen has the aim to score as many runs as possible, whereas in the second innings,
batsmen face a specific target to win. There exists a trade off in ODI cricket between risk and reward,
whereby to score more runs generally requires the batsmen to increase the risk of losing his wicket. In the
second innings, if a target is relatively small, a batsman may opt to score at a slower rate thus reducing risk.
The impact of having a target to chase (2™ innings) in comparison to maximising the number of runs scored
(1" innings) has a dramatic impact on the predictability of RPO. Over twice as much variation can be
explained in the first innings compared to the second, suggesting that external factors increase the variability
associated with the second inning. Using linear regression, significant interactions could be found between
the batting sequence and several other prediction variables, suggesting the need to model the first and second
innings separately.



Overs

A linear predictor applied to RPO would suggest that in the first innings of a game, the expected number
of RPO would increase at a rate 0.057+0.001 for each additional over. Interestingly, a linear predictor
applied to the second innings would suggest that the expected number of RPO would increase at a rate of
only 0.024+0.001 runs for each additional over. In reality, the effect of the new ball and fielding constraints
ensure that a linear relationship between runs and overs is overly simplistic.

From Figure 1B it could be hypothesised that the relationship between overs bowled and runs scored
during the course of a match follows a polynomial distribution with three degrees. Although perhaps a little
simplistic there is merit in assuming that the course of ODI innings goes through three distinct stages. With
fielding restrictions in place for the first 15 overs’, a clear distinction can be seen between the fifteenth and
sixteenth overs. Further scrutiny reveals that the scoring rate increases more dramatically as the match
approaches its conclusion, suggesting a need to identify the turning point in which teams begin to accelerate
the scoring rate towards the end of the match. To do this, a series of indicator variables were created,
categorising the data as either above or below a given cut-off of overs. By then maximising the likelihood,
the cut-off that produces the best fit to the data was identified. By considering a generalised linear model of
the following form

Runs = A+B(First15)+C(Overs)+D(first15*Overs)+ E(Cutoff) +F(Cutoff*Overs) (1)

each match could be divided into three sections, with a linear model fitted to each section. A cut-off at the
41 over mark produced the best fit to both the first and second innings. Thus each innings could now be
viewed as having three distinct phases, start (overs 1-15), middle (overs 16-41) and end (overs 42-50).

Wickets Fallen

Cricket is played between two teams of 11 players — of which two are required to be at the batting crease
at any given time. As a general rule, better players bat higher in the batting order so as to optimise the time
available from which to score runs, although players batting down the order can often score at a faster rate.
Not only is each batting team constrained by the maximum number of overs that they can receive, they are
also limited by the number of batsmen that they have available. Theoretically, one could expect that as
wickets fall, so too would the scoring rate.

Using a generalised linear model, with wickets fallen as a continuous vartable, the fall of each wicket
was found to have significantly more impact towards the end of a game with each additional wicket reducing
the average run rate by about a half a run per over. There was no significant difference between the rate of
decline between the start and middle stages of the game. This is reflected in Figures 3A and 3B, with the
relationship between wickets fallen and RPO differing significantly between the three stages of the first
inning. (start: -0.13+0.03 runs per wicket fallen, middle: -0.19+£0.03, end: -0.59+0.03).

2 . . . ~ s . .
“ See Discussion section for information concerning ‘Power Plays’
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Figure 3A and 3B: RPO for wickets fallen for the three stages of the first inning and second innings respectively

From Figure 3B it can be seen that in the second innings, the fall of a wicket will reduce the run rate by
the greatest amount during the start of the innings (start: -0.18+0.04, middle: -0.06+0.05, end: -0.12+0.04).

Wicket last over

Factors that occur within the game can have enormous effect on RPO. A good example is if a wicket has
fallen in the previous over. As seen in Bailey and Clarke (2004), a study of all ODI batting performances
revealed that as in test cricket, batsmen are most vulnerable when they first come to the crease. This reflects
a brief “training” period where batsmen adjust to the conditions and the way the opposition are bowling. If a
wicket has fallen in the previous over, a team will score on average one run less in the following over in the
first innings and 1.3 runs less in the second innings (1* innings 0.98+0.05 vs. 2* innings 1.32+0.06,
p<0.0001).

Partnerships

Another strong predictor for RPO is the magnitude of the partnership for the batsmen at the crease. This
equates to the number of runs scored since the fall of the last wicket. It is generally accepted that the longer a
batsman spends at the crease, the more comfortable he becomes, thus making it casier to score runs.
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Figure 4: Relationship between partnership and runs per over

From Figure 4 it is possible to see a clear linear trend between partnership and RPO. Although
partnership appears to have a slightly stronger relationship with RPO in the first innings than in the second,
this difference was not statistically significant. Figure 4 shows the greatest difference between innings occurs
for partnerships in excess of 100 runs. This is not a surprising result, as in the second innings batsmen are
chasing a specific target and are thus not required to maximise the scoring rate to its optimal potential. From
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the multivariate models, the parameter estimate for partnership in the first tnnings is equivalent to
0.006+0.001 RPO whilst for the second innings the parameter estimate is equivalent to 0.005+0.001 RPO.

Runs previously scored in the match

Significant auto-correlation exists between consecutive overs in ODI matches. Because bowlers will
often bowl consecutive overs from the same end, it is of no surprise that runs scored in the previous over
from the same end provide an even better predictor of RPO. By measuring the Average Absolute Error
(AAE) between actual runs scored and predicted runs scored, it is possible to compare the explanatory
capacity of various within game predictors. From Figure 5 it can be seen that the more information that can
be used from within the match, the lower the AAE, thus the better the prediction.

3.6

3.2

2.8 A

AAE (runs)

Predictors created from past overs

Figure 5: AAE for predictors created from previous overs bowied

Arithmetic averages weight each over equally, irrespective of when it occurred. An alternative approach
is to give more weight to more recent overs by exponentially smoothing past results. It is possible to derive
an unbiased prediction for future data by using the formula

Smoothed score =a actual runs + (1- a) Previous smoothed score 2)

where « is the smoothing parameter. Both rolling averages and exponentially smoothed predictors were
compared. Whilst Figure 5 would suggest that exponential smoothing produced the lowest AAE, the run rate
for the previous five overs and the average runs scored from the last three overs from the same end were also
highly significant predictors in the multivariate model.
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Figure 6A and 6B: RPO vs run-rate for the previous five overs and run-rate for the last 3 overs from the same end

For every one run increase in the run rate for the previous five overs, RPO was found to increase in both
the first and second innings at a rate of 0.15+0.03. While Figure 6A might suggest the rate to be slightly
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different between the first and the second innings, this was not statistically significant. Similarly, for every
one run increase in run rate from last three overs from the same end, RPO was found to increase at a rate of
0.1140.02. There was no significant interaction with innings for either of these two predictors (See Figure
6B).

Best Bowler

A closer examination of the first 15 overs reveals some interesting trends. At the commencement of each
game, the bowling side is given the use of a new cricket ball. This new ball combined with a joint training
effect experienced by both batsmen as they “get their eye in” ensures that significantly less runs are scored
on average in the first over than all others (first over 3.44+0.08 vs. all other 4.76+0.01, p<0.0001). When
considering first inning performance versus second inning performance, the first over effect is greater in the
first innings (first over 3.20+0.11 vs. all other 4.83+0.02) than in the second, (first over 3.69+0.11 vs. all
others 4.68+0.02), with an interaction term between innings and first over statistically significant (p<0.0001).

| First innings B Second innings |

Average RPO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Overs

Figure 7: Average runs scored in the first fifteen overs

It is normal for the best fast bowler in the side to have first use of the new ball. Each bowler can bowl up
to 10 overs per game, but it is unusual for an opening bowler to bowl all 10 overs consecutively. Although
dependent upon the performance of the bowler, it would be usual for the best fast bowler in the side to have a
spell of bowling that would last about 5-7 overs. This means that it is not unrealistic to expect that the best
fast bowler in each side would bowl the first five odd numbered overs (1.,3,5,7 & 9) and the second best fast
bowler would bowl the first five even numbered overs (2,4,6,8 &10). The fact that bowlers alternate ends can
clearly be seen from Figure 7 with a significant difference existing between the best and second best fast
bowlers from each country. This result can be further confirmed by averaging runs scored for the first five
odd numbered overs in comparison to the first five even numbered overs (odd 4.04+0.04 RPO vs. even
4.57+0.04 RPO p<0.0001). To account for the best bowler from each country, an indicator variable was
created to identify the first five odd numbered overs from each innings. There was no significant interaction
between the best bowler and innings.

Host Country

Twenty different host countries are represented in the database, although only 12 host countries have
more than 1000 overs of available mformation. From these 12 countries, runs are primarily scored at the
greatest rate in sub-continental countries, where pitches are perceived to be more batsmen friendly.

Team

Significant differences can be seen in the relative strength of the batting teams of competing nations.
Interestingly, there is a strong correlation between the average number of runs scored per team and the
number of overs each team has faced over the past six years. From Figure 8 a clear distinction can be drawn
between the more established cricketing nations and those who play international cricket on a less frequent
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basis. This may also reflect the fact that the weaker cricketing countries are less likely to bat and bowl for
their full 50 overs. Australian batsmen have scored at the fastest rate in the past six years, followed by India
and South African batsmen. Second tier teams such Scotland, Canada and the Netherlands, score at the
lowest run-rate and have faced the fewest number of overs at an international level in the last six years.
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Figure 8: RPO and overs faced for the batting team

Team by stage

In addition to differences that exist between scoring rates for different countries, there are also
significant differences that exist between countries for each of the three stages in the match. This may well
reflect a difference in coaching strategies with some countries such as Australia, opting to follow the advice
of Clarke (1988) and score faster earlier in the match, whilst countries such as Pakistan may have a
preference to be more conservative earlier in the game, but score faster in the later stages of the match. An
alternative explanation could be that Australia has faster scoring batsmen at the start of their batting order,
whilst Pakistan has faster scoring batsmen lower down their batting order.

Opposition by Stage

An important contributing factor to the number of runs scored per over is the quality of the opposition
bowlers and fielders. From the 627 matches played, there were 15 countries represented, with 11 of these
countries having more than 1000 overs of data available. Overall, South African and Australian bowlers have
been the hardest to score runs from, although different countries appear to perform better at differing stages
of the match. Once again, this may well reflect the coaching strategies adopted by each country, or may
simply be a legacy of team composition.

Multivariate linear models

A parametric approach to exploring variation associated with RPO enables the use of generalised linear
modelling to determine the statistical significance of potential predictive variables. An additional benefit of
the linear approach is that it allows practical comparisons to be made through the use of the R-square
statistic. 18.4% of the variation in first innings score can be explained by a multivariate model, whereas only
7.5% of the variation in the second innings could be explained. This confirms the need to model innings
separately. Multivariate models were constructed using stepwise selection and backwards elimination
procedures before undergoing validation for plausibility using standard diagnostic procedures.

Ten first-order variables and four second-order variables were found to be significantly related to RPO in
both innings with a p-value less than 0.0001. The corresponding reduction in AAE and -2 log likelihood for
each stage of development can be seen in Table 1.



Table I: Goodness of fit for stages of model development for both innings

Stage Variable First innings Second innings
AAE 2LL R’ AAE 2L R

1 Over Number 257,01 157200 5.7%  2.58+.01 132233 09%
2 + Stage 2.53+.01 156187 89% 2.57+.01 132012 1.8%
3 +Over X Stage 25101 155712 10.3% 2.57+.01 131997 19%
4 +Wicket 24601 154204 14.1% 2.54+01 128976 3.3%
5 +Wicket X Stage 244+ 01 153911 149% 2.54+01 128950 3.4%
6 +Partnership 243+.01 153652 157% 2.53+01 128732 43%
7 +Run rate last 5 242+.01 153235 16.7% 2.51+01 128310 5.7%
8 +Wicket last over 24101 153144 17.0% 25101 128272 5.9%
9 +Ave. last 3 same end 2.41+.01 152997 17.1% 2.50+.01 128076 6.2%
10 +Best Bowler 24101 152984 17.2% 2.50+.01 128071 6.2%
11 +Team 24101 152900 17.5% 2.50+.01 128040 6.4%
12 +Home Country 24001 152854 17.7% 2.49+01 127999 6.7%
13 +Opponent X Stage 24001 152744 18.1% 249+01 127935 7.0%
14 +Team X Stage 2.39+.01 152693 18.4% 248+01 127851 7.5%

Key:  AAE = Average absolute error, -2LL = -2 * log likelihood
R’ = Percentage of variation explained by model

Although the host country and the quality of both teams can be shown to be independently significant,
their contributions towards improving the model are quite small. Whilst parameter estimates differ
significantly, the key components for the first innings model, namely, overs, wickets, partnerships and run
rates are also the most important predictors for the second inning models. By comparing the R-square
statistic for 14 stages of model development between the two innings it can be seen that although the models
develop in a similar fashion, far more unexplained variation exists in the second innings.

DISCUSSION

In July 2005 the International Cricket Council (ICC) announced two new rules for ODI matches. The
first of these rules, the introduction of a super-sub, was found to bias against the team batting second and was
subsequently dropped after 12 months. The second rule, an increase in field restrictions from 15 to 20 overs
1s still in operation. Previously, fielding restrictions were in place for the first 15 overs of each innings only,
whereas now, fielding restrictions are mandatory for the first 10 overs only, with the fielding captain now
responsible for the timing of two additional blocks of five overs referred to as ‘Power Plays.” Whilst this new
rule has served to increase the average number of runs scored per over (4.98+0.02 vs 4.78+0.01 p<0.0001)
the fact that the first Power Play has been taken from overs 11-15 in over 90% of matches ensures that the
three stage models incorporated in this paper are still applicable. With this in mind, future models should
seek to further explore the effect of Power Plays.

CONCLUSION

Using past data it is possible to identify features of the match that can aid in the prediction of the number
of runs scored per over. The use of mathematical models to predict RPO during the course of the match
opens new doors for bookmakers. The speed and objectivity of a mathematical approach supersedes
traditional bookmaking methods. A mathematical model, incorporating simple past features of the game
enables a dynamic price setting process and creates a much greater scope of betting opportunities for the
punter.
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Abstract. The distribution of runs per over (RPQO) scored in one-day international cricket does not
follow a known distribution. Bailey and Clarke (2008) used multiple linear regression to identify and
weight 14 highly significant variables found to be independently predictive of RPO. This paper expands
on this work by comparing a range of possible distributions for modeling RPO using both standard’and
novel approaches. Predictive capacity was determined by developing parameter estimates using 75% of
the available 55000 overs and applying the subsequent prediction models to the remaining 25% of the
data. Goodness of fit was determined by averaging the log of the predicted probabilities for the actual runs
scored with the model producing the highest average indicative of the best fit to the data. Of the 10
approaches examined, a slivered binomial approach appeared to produce the best fit to the data, although
due to the increased number of models required, considerable care is needed to ensure that the data is not
over-fitted. Both the ordinal logistic regression and the negative binomial approach produced good fits to
the data and were more simplistic in implementation. Although not significantly different from each other,
these three approaches were significantly better than the remaining seven models that were considered
(p<0.0001).

Keywords: Runs Per Over, ODI cricket, Comparison of distributions

INTRODUCTION

The advent of the internet has dramatically increased world-wide exposure to cricket and has paved the
way for a wealth of betting opportunities. In particular, punters can now wager on the number of runs per
over (RPQ). Whilst one-day international (ODI) cricket matches have been played internationally for 37
years, the literature relating to ODI cricket is sparse. Duckworth and Lewis (1998) have investigated
expected team innings scores to develop an unbiased approach to resolving ODI matches when rain delays
occur. Similarly, Bailey and Clarke (2004) have compared distributions for batsman scores in ODI cricket.
Neither have modeled data at an individual over level.

Each over in ODI cricket comprises of six legitimate deliveries, with the batsmen capable of scoring
anywhere from zero to six runs from each delivery. Given that the probability for each run outcome differs
markedly, it is of little surprise that the number of runs scored per over will not follow a unique distribution.
Bailey and Clarke (2008) applied a multiple linear regression to 627 ODI matches to identify ‘within’ and
‘between’ match features that could aid in the prediction of RPO. Whilst the magnitude of the database used
(55000 overs) allows for some practical benefit to be gained, it remains that a basic assumption for the use of
linear regression is that the underlying distribution of RPO is approximately normal. From Figure 1, it can be
seen that this is not the case.
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Figure 1: Histogram of runs scored per over in ODI cricket

This paper seeks to build -on the work of Bailey and Clarke (2008), by utilising the same prediction
variables that were identified by linear regression and applying them to a range of prediction approaches that
consider differing underlying distributions.

METHODS

ODI cricket is played world wide with more that 2600 matches played. Although match and player
information is available for all matches played, information at an individual over level has only
become available in recent years. Over by over information was gathered from 627 matches played
between 1998 and 2004. Although in theory, 100 overs could be bowled in each ODI, due to the
nature of the game, this has only occurred about 12% of the time. There are various reasons why a
game would not go for the full 100 overs. Rain delays, one or both of the sides being dismissed
before using their full resource of 50 overs, the second side completing the required target within
the 50 overs, or penalties imposed upon teams for slow play are all reasons why 100 overs would
not be bowled. On average, 88 overs were bowled per match, creating a database of 55000 overs.
Using multiple linear regression, ten first-order variables and four second-order variables were found to be
significantly related to RPO in both innings with a p-value less than 0.0001. In order of importance these
variables were:

1. Over number

2. Stage of match: start (overs 1-15), middle (overs 16-41) and end (overs 42-50)
3. Interaction (Over x Stage)

4. Wickets fallen

5. Interaction (Wickets x Stage)

6. Size of current batting partnership

7. Run rate for the last S overs

8. Wicket fell in last over

9. Average runs scored from the last 3 overs of the same end
10. Best bowler: the first five odd numbered overs in the innings
Il. Team strength

12. Home Country

13. Interaction (Opponent x Stage)

14. Interaction (Team x Stage)
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To determine what underlying distribution might best approximate RPO, five distributions namely
Normal, Log-normal, Gamma, Poisson and Negative-binomial were modelled to the data using these 14
previously identified prediction variables. These five distributions were initially compared using the
Absolute Average Error (AAE) between the predicted mean and the actual number of runs scored.

By collapsing all scores greater than nine into the same category, two additional modelling approaches
were incorporated using logistic regression. Firstly, an ordinal logistic regression was applied to the 11
possible outcomes (0, 1, 2...9, >9). This model incorporates a different intercept term for each additional
run, but has fixed parameter estimates. To further enable variation in the parameter estimates for each run
category, a series of 10 binomial models were constructed, each with a different cut-off for success. The first
model predicted whether the number of runs scored would be greater than or equal to one, whilst the second
model predicted whether the number of runs would be greater than or equal to two, and so on. By subtracting
sequential models the probability for each run category could be determined.

A more robust ‘Reduced Binomial’ model was also created by removing the four ‘between match’
variables (Team, Home country, Team X Stage and Opposition X Stage) from the training models. For
further comparison, two additional approaches were incorporated, one that assigned an equal probability of
0.091 to the 11 run categories, and a final comparison that assigned the actual probabilities derived from the
training data set.

To avoid the bias associated with over-fitting, predictive capacity must be assessed in a sample of data
separate from that which parameter estimates were derived. This was achieved by developing parameter
estimates from all data prior to 2003 and applying to matches played in 2003 and 2004 (169 matches).
Goodness of fit was determined by averaging a function of the log of the predicted probabilities for the
actual runs scored, with the model producing the highest average, indicative of the best fit to the data. This
average is the information content of the predictions, and is related to the likelihood of the outcome, but
gives a minimum of zero for the case when all possible outcomes are allocated equal probabilities. Statistical
significance between models was determined using Wilcoxon rank sum tests.

RESULTS

Using generalised linear modelling, five multivariate models were constructed, each assuming a differing
underlying distribution (Normal, Poisson, Gamma, Negative binomial and Log-normal). The 14 variables
that were found to be highly significant (p<0.0001) using the Normal distribution model were applied to the
other four distributions, and found to be equally significant (p<0.0001) regardless of what underlying
distribution was fitted to the data.
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Figure 2: Comparison of AAE for the five distributions
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The AAE between the predicted and actual scores was compared for the five distributions and can be
seen in Figure 2. Clear differences exist between the first and second innings with the first innings being
more than twice as predictable as the second innings. Overall, the log-normal approach was found to
produce the lowest AAE for both the first and second innings.

Training data @ Holdout sample

Average LogProb
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Figure 3: Comparison of average LogProb between models for first innings

Predictive capacity for first and second innings models can be seen respectively in Figures 3 & 4.
Although the 14-parameter multivariate binomial approach was found to produce the best fit to the training
data, the large difference between the training data and the holdout data in both imnings indicated over-
fitting. To alleviate the bias of over-fitting, the four ‘between match’ variables (Team, Home country, Team
X Stage and Opposition X Stage) were removed, creating the ‘Reduced Binomial’. The similarity between
the average log of the probabilities in the training and holdout samples for the Reduced Binomial model,
suggest that the source of bias due to over-fitting had been removed. From Figures 3 & 4 it is possible to see
that the Reduced Binomial model appeared the best performed model in both the first and second innings.
Although no statistically significant differences existed between the Reduced Binomial, Ordinal Logistic and
Negative Binomial models, all three of these approaches were significantly better than all others (p<0.0001)
for both first innings and second innings.
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Figure 4: Comparison of average LogProb between models for the second innings
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DISCUSSION

Whilst some loss in predictability between training and holdout samples is expected, with datasets for
both first and second inning models in excess of 20000 data points it is realistic to expect that bias associated
with over-fitting would be small. Interestingly, it was only the full-binomial model which had differing
intercepts and differing parameter estimates for each run category that was significantly biased. The primary
source of this bias could be traced to ‘between match’ variables such as team, country and opposition that do
not remain consistent between training and holdout samples. Over fitting is best avoided by choosing highly
significant variables with lower degrees of freedom.

CONCLUSION

The wealth of internet data available provides an excellent opportunity to build robust prediction models
for RPO. Using past data it is possible to identify features of the match that can aid in the prediction of the
number of runs scored per over. Whilst the use of linear regression provides an easy way to identify and rank
predictors of RPO, when constructing prediction models for RPO, significantly better approaches can be
employed. While the use of a binomial model with differing intercepts and differing parameter estimates
provides the most accurate prediction approach, this was not significantly better that a binomial model with
fixed parameter estimates, or a negative binomial model. In addition, the increased complexity of the
slivered binomial approach dramatically increases the chance of over-fitting the data. While the bias of over-
fitting can be alleviated by choosing a simple prediction model constructed from within match parameters
only, the ease of use of the ordinal or negative binomial models suggest a greater usability.

The use of mathematical models to predict RPO during the course of the match opens new doors for
bookmakers. The speed and objectivity of a mathematical approach supersedes traditional bookmaking
methods. A mathematical model, incorporating simple past features of the game enables a dynamic price
setting process and creates a much greater scope of betting opportunities for the punter.
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Abstract. There are several scoring system variations for contests between tennis teams in operation
throughout the world. Here we analyse the major team tennis competition in Sydney (‘Badge’), as it
would appear that any improvements possible in it could be applicable elsewhere. In ‘Badge’, Team A
and Team B each have two doubles pairs. Pair Al plays two tie-break sets against pair Bl on court |,
whilst A2 plays two tie-break sets against B2 on court 2. When both of these matches are finished, A2
plays Bl on (say) court 1 whilst Al plays B2 on court 2 to complete the fixture, making 8 tie-break sets in
total. Advantage games are used, and the tie-break game is played at 5-5 (if necessary), not 6-6. The
winner is the team that wins at least five sets, or if each team wins 4 sets, the winner is the team that wins
the most number of games (on a ‘countback’). Otherwise, the match is a draw (or is unfinished), unless
one team must win despite losing all unplayed games. Note that considerable court time can be wasted if
the first two sets finish very quickly on one court (e.g. 6-2, 6-1) relative to the other court (e.g. 6-4, 6-5).
A maximum time of 2 hours and 30 minutes is allocated to each fixture. The aim of this study was to use
simulation methods to analyse and report on whether scoring system changes such as no-ad games, ‘50-
40’ games, ‘first-to-7-games’ sets, drawn sets,... could be useful in decreasing court-time wasted at the
cross-over, increasing the number of fixtures completed, and increasing the likelihood of the better team
winning. An alternative scoring system with these properties was found. Similar approaches may be
applicable to other sporting contests between teams, tennis in particular.

Keywords: improved scoring systems for team tennis, drawn sets and first to seven games sets of tennis.

INTRODUCTION

The major teams’ tennis competition held across Sydney on Saturday afternoons is the ‘Badge
Competition’ involving men’s (and women’s) doubles. There are 8 teams in each grade, and each team plays
cach other team twice, on a home-and-away basis. Each team has two doubles pairs. In an afternoon when
team A plays team B, the pair Al plays two tie-break sets against pair Bl, and also plays two tie-break scts
against pair B2. Correspondingly, pair A2 plays two tie-break sets against pair B2 and two tie-break sets
against pair B1, making 8 tie-break sets in total. Advantage games are used throughout. The tie-break game
is played at 5-5, not 6-6. This is very interesting as it is a rare case in which a scoring system that is not an
option within the ITF Rules of Tennis 2008 is used in an important competition.

Prior to 2006, the order of play could be represented by Al vs Bl, A2 vs B2, A2 vs BI, and finally A1 vs
B2, the matches being played sequentially on one court. Under this structure half of the players were off the
court at any point in time. In order to reduce substantially the amount of time spent off the court by the
players, a major change was made to this structure in 2006. Two courts are now used for approximately half
the time previously taken. Thus, the order of play can now be represented by Al plays Bl on court I, whilst
A2 plays B2 on court 2. When both of these matches are finished, A2 plays BI on (say) court 1 and A1 plays
B2 on (say) court 2 to complete the contest (i.c. there is a cross-over). The winner is the team that wins at
least five sets; or if cach team wins 4 sets, the winner is the team that wins the most number of games (on a
‘countback’). If the teams win an equal number of sets and games, the match is a draw. If one team (say team
A) has won (say) 4 sets, and the other team (team B) has won (say) 3 sets but cannot possibly win on a
countback because they have not won enough games in total, then team A is the overall winner.
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The new format was established so that the players spent much less time off the court. As two courts are
now necessary for a fixture, there are two sessions for the competition during the afternoon: the carly
afternoon session from 12:00 to 14:30, and the later session from 14:30 to 17:00. The new format can work
very well when the first two matches in a contest finish at about the same time. If this happens, very little
time is wasted by the players. However, some court-time can be wasted (i.e. one of the two courts is not
used) if the first two sets finish relatively quickly on one court (eg 6-2, 6-1), but the two sets take much
longer on the other court (eg 6-4, 6-5). More fixtures might be completed if less court-time was wasted.

The recent changes lead to two questions.

1. Is there an alternative scoring system (to the present two tie-break sets with a tie-break game at 5-5)
that would co-ordinate better the completion of the first two parallel matches, whilst keeping such
things as the likelihoods of each team winning the match much the same as they are now?

2. Why play the tie-break game at 5-5, given there is often a real likelithood of delaying the starting
time of the following two matches? Why not award half a set to ecach team when the score reaches
5-57 Any one set is presumably not of sufficient importance to require a winner to be determined.

The aims of any change to the scoring system presently being used would be to reduce as much as
possible the court-time wasted at the cross-over, and to increase number of matches completed (and won by
the better team) rather than drawn.

In addressing these questions and aims, we can make use of some recently published research by Pollard
et al. (2007) on alternative scoring sytems for doubles. They studied the mathematical/statistical properties of
the new doubles scoring: system adopted by the ATP Tour in 2006, and compared this system with the
system previously in use. They also studied the properties of five other alternative scoring systems for men’s
doubles, and concluded that “all of the five alternative scoring systems would appear to be just as good as, or
even a little better than the (recently adopted) scoring system, from a statistical point of view. They are all at
least slightly more efficient, and have higher values for P, the probability that the better pair wins’. They also
stated that ‘the system using ‘draw-sets’ is perhaps the most interesting one. It has a reduced mean, a small
standard deviation, a low 98% point, and a good efficiency with an improved value of P’.

The five scoring systems mentioned above made use of several scoring system structures including:

50-40 games’ (and ‘60-50 games’)

e ‘first-to-seven-games sets’ (and ‘first-to-five-games sets’), which can be fairer than the first-to-six-
games sets that are presently used (Pollard, 2005)

e ‘draw-sets’ that result in a win, a draw or a loss in the set to either pair, and

e ‘first-to-nine-points tie-break games’ (which can be fairer than the first-to-seven-points and first-
to-ten-points tie-break games that are presently used (Pollard, 2005)).

Given the statistical characteristics reported in the above study for the four scoring system structures
above, it would appear that the first three of them could be quite useful in addressing the situation in Sydney
Badge doubles. For this reason these three structures are discussed in the next few paragraphs.

Firstly, the usefulness of the ‘50-40 game’, particularly in men’s doubles has been noted (Pollard &
Noble, 2004). In a 50-40 game, the server is required to reach 50 (one more point than 40) before the
receiver reaches 40, in order to win the game, whilst the receiver wins the game by reaching 40. Pollard &
Noble (2004) noted that, for parameter values relevant to professional men’s doubles, ‘the longest best-of-
three tie-break sets matches (as measured by the 98% point in the distribution of the number of points
played) can be reduced by about 30 points by using ‘50-40 games’ instead of no-ad games (an option within
the ITF Rules of Tennis 2008 in which only one point is played if deuce is reached)’. They also noted that
for the same parameter values ‘the probability that the better player wins a best-of-three tie-break sets match
using ‘50-40 games’ is comparable to when no-ad games are used, even though about 20 less points are
required on average in the match’. The classical or advantage games used in Badge clearly take longer than
no-ad games, and so for the situation being considered in this study, there would appear to be a moderate-
sized savings in points played by using 50-40 games. Also, it is noted that advantage games can sometimes
cause quite long delays on (say) one of the two courts being used.
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The results in the paper by Pollard et al. (2007) indicate that a ‘first-to-five-games (tie-break game at 4-
4) set’ using ‘60-50 games’ (a natural extension or variation of the 50-40 game) has about 2-3 less points on
average than a standard tie-break set using no-ad games. Thus, the 60-50 game when used with “first-to-five-
games sets’ and a drawn set at 4-4, might be a useful scoring system for the teams’ situation being
considered in this paper. Note that with such a scoring system, it is only necessary to change ends after
games 2 and 6 in the set, and not after games 1, 3, 5 and 7, leading to a further savings in time.

Secondly, it has been noted that the present first-to-six-games sets can be unfair in doubles (Pollard,
2005). This unfatrness results from the fact that one player in a doubles pair may have three service games in
a set whilst his partner may have just two. This unfaimess can be removed by playing (say) ‘first-to-seven-
games sets’, which operate probabilistically like ‘best-of-twelve-games sets’ in which each player has three
service games cach. Alternatively, the unfairness can be removed by playing ‘first-to-five-games sets’, which
operate probabilistically like ‘best-of-eight-games sets’ in which each player has just two service games
each. The results in the paper by Pollard et al. (2007) indicate that ‘first-to-seven-games (with tie-break game
at 6-6) sets” when used with 50-40 games have about the same expected number of points as the standard
tiebreak set when used with no-ad games. Thus, since at present classical or advantage games are used in
Badge tennis, this ‘first-to-seven games sets’ system is quite possibly a reasonable alternative for this study,
especially if the set is declared a draw at 6-6 creating some further decrease in expected duration (and a
decrease in court-time wasted). Note that for such a system it is only necessary to change ends after games 2,
6 and 10, rather than after games 1, 3,5, 7,9 and 11.

Thirdly, the idea of declaring a set a draw if the games’ score reaches 6-6 has been considered by Pollard
and Noble (2003). Note that the rationale behind declaring a draw at 6-6 is that the tie-break game, with an
expected duration of about 12 points, is too often lost by the better player; and this is after a considerable
investment in time (say about 60 points) has been made in getting to 6-6. A loss in the tie-break game by the
better player is not good for the efficiency of the scoring system in total or for its variance of duration. For a
draw-set structure, the set score is incremented by 2, | or 0 for a win, draw or loss respectively. Pollard and
Noble (2003) considered ‘best-of-two-sets’ matches with the winner of the match being the first player to
reach a set score at least 3. If a set score of 2-2 was reached, a (long) tie-break game was played to determine
the winner. Interestingly, they noted that ‘when playing no-ad games and ‘best-of-two sets’ with a deciding
match tie-break (7), it is (perhaps surprisingly) more efficient not to play the tie-break game at 6-6 (in each
of the first two sets) than it is to play it’. We note here that declaring a set to be a draw at 6-6, although fair
for the players, can be seen as an unattractive rule by those spectators who like the excitement of the tie-
break game. Then again, for most non-professional matches (and even for some professional matches), and
certainly in our present context, there are typically few or no spectators. Thus, a change to declaring a draw
at 5-5 would appear to have its merits in our present considerations. Note that with the present scoring
system used for Badge, the two sets between a two pairs are quite often drawn (1-1), so the concept of a
drawn match in Badge is not new. In fact there could well be a reduction in the number of drawn matches
with some of these |-1 draws being replaced by 1.5 to 0.5 set wins to one team or the other. Further, a drawn
set at 5-5 m a set would appear to be quite a reasonable outcome as it is the outcome of the overall contest
that is of interest, rather than the outcome of any particular set or match. Further, playing a tie-break game at
any stage of the contest often extends the duration of the contest and the time wasted.

METHOD
Aims of this study
The aims of this study were to identify a scoring system which, compared to the current Badge system:

1. Finishes the match fully, and/or gives a win/loss outcome for the fixture more often.

2. Wastes less court-time (i.c. at the cross-over, has a fewer expected number of points on one of the
courts whilst the match has finished on the other court).

3. Plays more tennis in total.

4. Achieves a similar or higher value for the probability that the better team wins.

Perhaps it could be possible to find a system that was better on all of these four aims.
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The data available were the results from rounds 15 to 21 of the 2007 Sydney Badge competition as
published in a Sydney newspaper on the momings following each round. Not all results of the previous day
were available, as some did not meet the cutoff time for the newspaper. In total there were 420 results from
all men’s and women's grades each showing the number of sets and games won by each team, the winning
team or whether there was a draw or no result. On average 69.2 games were played per match. Only 7 sets
were completed 18.1 % of the time, and only 6 sets were completed 6.7 % of the time.

Simulation Study

A computer simulation program was devised which simulates individual sets, and then combines the sets
into pairs of sets representing a single match between two doubles pairs. This aspect of the program was
checked using convolution methods for the two sets played. Two such two-set matches are then considered
in parallel. The theory of the distribution of the maximum, and the maximum minus the minimum of two
random variables was used to check the program logic at the cross-over. Further, the program was checked
by point-by-point monitoring of play to see that scoring and logging of match statistics were correct. The
results were also checked against other published work and found to agree (Pollard, 1983; Pollard & Noble,
2004; Pollard et al., 2007; Brown et al., 2008). Although the program has the capacity to handle four
different servers (and different rules as to who serves at the beginning of each set), only two different types
of servers were considered in this study, as this was sufficient to study the issues under consideration. The
authors believe that the software developed for this study is a useful resource for studying other scoring
system issues for individuals and for teams, and even for some other sports.

For each of the scoring systems under consideration, simulations of 1,000,000 fixtures were carried out.
This was a sufficient sample size to achieve appropriate accuracy. Team A was assumed to have serving
point probabilies of pa, and team B was assumed to have serving point probabilities of pb. The team that
served first at the beginning of every match was selected at random. Limiting the number N of points played
on each court operated as a proxy for the court-time limit of 2% hours.

The scoring systems structures considered

A range of scoring system structures was considered. It included four game types (advantage games, no-
ad games, ‘50-40 games’ and ‘60-50 games’); sets played as first-to-six, ‘first-to-seven’, and ‘first-to-five
games’; sets declared tied at 5-5 and at 6-6; tied sets resolved by tie-break games, or drawn sets (no tie-
break).

RESULTS
An alternative system

Rather than report on the range of specific scoring systems that were equal or similar to the existing one,
we report in detail on just one system that can be argued to be better than the present onc. It was possible to
disregard some of the scoring system options under consideration. For example, it was noted that the 50-40
game, whilst seen to be very useful in some other scoring system applications (e.g. Pollard & Noble, 2004:
Brown et al., 2008), produced sets that were typically too short, and could not be used in this Badge
application without making sets the ‘first-to-cight games’. Such a large number of games in a set seemed an
unattractive characteristic, particularly given variance and fairness considerations. Correspondingly, 60-50
games produced (first-to-six games) sets that were typically too long.

The recent modification of playing the tie-break game at 5-5 rather than 6-6 was observed in the
simulations to be a successful one in achieving the various aims of Badge tennis. However, it was observed
in the various simulations that it was consistently better not play the tie-break game at all. Why play the tie-
break game when the set is already long, having reached 5-5 (or 6-6), and when the real interest is in which
team wins the whole fixrure rather than on which pair wins a particular ser? By removing the tie-break game
and declaring the set a draw, the number of fixtures requiring a countback to games decreased, and the
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percentage of fixtures won by the better team increased. Thus, whilst playing the tie-break game resolves the
outcome of a particular set, it does not assist in resolving the outcome of the overall fixture.

The alternative system with greatest potential appeared to be one using no-ad games, first-to-seven
games sets’, and drawn sets if 6-6 is reached. 1t is noted here that ‘first-to-seven games sets’, in which each
player has the potential to have three service-games in a set, can be fairer than present first-to-six games sets
(Pollard, 2005).

It can be seen from Table 1 that when there are no time constraints (N = o) the alternative system has a
similar mean to the present system, but a smaller standard deviation (25.8 points rather than 39.2) and a
smaller court-wastage (14.7 points rather than 22 2). These two characteristics are very useful when time

Table 1: Statistical characteristics (i.e. probabilities, number of points, number of games or percentages) of the present
and alternative systems when (pa, pb) = (0.6, 0.5) and N = «c, 290, 280 and 270, where N is the maximum number of
points playable on one court.

Present | Present | Present | Present | Alt Alt Alt Alt
N o) 290 280 270 o 290 280 270
6 sets 0 0.019 0.046 0.101 0 0.000 | 0.002 | 0.024
7 sets 0 0.111 0.185 0.269 0 0.002 | 0.033 | 0.148
8 sets | 0.870 0.768 0.629 1 0.998 | 0.965 | 0.828
Points: mean 482.1 480.1 478.0 4742 4849 | 484.8 | 484.7 | 483.6
s.d. 39.2 36.3 341 30.9 258 | 258 [255 |243
Games: mean 71.7 714 71.1 70.5 84.3 | 842 | 842 | 839
s.d. 4.2 3.9 38 3.6 4.1 4.1 4.0 38
Win 0.982 0973 0.965 0.951 0976 | 0.976 1 0.973 | 0.962
Loss 0.016 0.013 0.012 0.010 0.022 ] 0.02210.021 | 0.017
Draw 0.003 0.013 0.023 0.039 0.003 | 0.003 | 0.006 | 0.021
Sets 0.957 0.940 0.926 0.906 0.974 |1 0.973 | 0971 | 0.960
C/back 0.043 0.060 0.074 0.094 0.026 | 0.027 1 0.029 | 0.041
Wastage (points) | 22.2 222 222 222 147 [ 147 | 147 | 147
Usage n.a. 0.828 0.854 0.878 n.a. 0.836 | 0.866 | 0.896

constraints are involved. When N = 290, 280 and 270 points, it is more likely that all eight sets are completed
under the alternative system than under the present system. Under the alternative system the probability of a
draw is smaller, the probability of a win by the better team is larger, fewer fixtures are determined by
countbacks, and there is less wastage at the cross-over and greater court-usage. The likelihood of all eight
sets being completed is quite sensitive to the value of N. It is noted that when N = 280 and (pa, pb) = (0.6,
0.5), the distribution of the number of complete sets (6, 7 or 8 scts) for simulations of the present system
(0.046, 0.185, 0.768) is similar to the observed distribution (0.067, 0.181, 0.752), although the average
number of games played (71.1) is greater than the observed value (69.2).

Table 2 with N =275 and (pa, pb) = (0.61, 0.49) gives a reasonable overall fit to the data values for 6/7/8
sets completed (0.067, 0.181, 0.752) and the average number of games played (69.2). These two statistics are
the appropriate ones for fitting the model of the present system to the available data. For these parameter
values, more fixtures are completed under the alternative system, there are fewer draws and unfinished
fixtures, more points are played on average, more fixtures are won by the better team, there is less court-
wastage at the cross-over, and there is higher court usage overall. These results indicate that the alternative
system is better than the present system.

The performance of the present and the alternative system is now considered when the time constraint is
more severe than those estimated in Table 2. This can occur as a result of slow play, a brief shower of rain,
etc. Four situations for the case when N = 260 are considered. The first is for a close match between two
moderately strong servers (columns 2 and 3), and the second is for a not-so-close match between such
servers (columns 4 and 5). Experience suggests that the (pa, pb) values in these 4 columns are representative
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of the higher men’s grades. The third situation is for close matches between weaker servers (columns 6 and
7), and the fourth situation is for not-so-close matches between such servers (columns 8 and 9). The (pa, pb)
values in these 4 columns are assumed to be representative of the lower men’s grades and

Table 2: Statistical characteristics (i.e. probabilities. number of points, number of games or percentages) of the present
and the alternative systems when (pa, pb) = (0.61, 0.49) when N = 275.

Present | Alt

6 sets 0.0453 | 0.0043
7 sets 0.1806 | 0.0554
8 sets 0.7739 | 0.9403
Points: mean 467.3 4770

s.d. 33.98 26.1
Games: mean 69.9 83.0

s.d. 3.8 4.1
Win 0.984 0.988
Loss 0.003 0.007
Draw 0.013 0.005
Sets 0.959 0.984
C/back 0.041 0.016
Wastage (points) | 22.1 15.1
Usage 0.850 0.867

women's grades. It follows that even though these results with N = 260 represent a more time-constrained
situation than at present, the alternative system still outperforms the present system for all of these situations.

Table 3: Statistical characteristics (i.c. probabilities. number of points, number of games or percentages) of the present
and alternative systems when N = 260, for various values of pa and pb.

pa, pb 0.62, 0.62, 0.65, 0.65, 0.52, 0.52, 0.55, 0.55,
0.58 0.58 0.55 0.55 0.48 0.48 0.45 0.45
System Present | Alt Present | Alt Present | Alt Present | Alt
6 sets 0.316 0.204 0.178 0.096 0.362 0.250 0.198 0.118
7 sets 0.363 0371 0.329 0.290 0.360 0.383 0.339 0314
8 sets 0.318 0.424 0.491 0.614 0.269 0.367 0.460 0.567
Points: mean | 480.9 492.0 469.1 481.0 481.0 49123 467.7 4795
s.d. | 221 16.7 26.2 20.4 225 17.5 273 21.6
Games:mean | 72.4 86.1 71.4 84.6 69.8 84.2 68.8 82.7
sd. |34 2.8 34 33 36 2.9 36 34
Win 0.628 0.657 0.928 0.937 0.621 0.646 0.931 0.934
Loss 0.116 0.138 0.010 0.014 0.103 0.129 0.007 0.012
Draw 0.257 0.205 0.063 0.050 0.276 0.226 0.062 0.054
Sets 0.640 0.809 0.877 0.939 0.635 0.806 0.881 0.937
C/back 0.360 0.191 0.123 0.061 0.366 0.194 0.119 0.063
Wastage 20.8 12.5 21.0 13.6 224 13.8 22.6 15.0
Usage 0.925 0.946 0.902 0.925 0.925 0.945 0.899 0.922

FURTHER CONSIDERATIONS

It is known that if a (slightly) better pair serves in the first game of a set, the most likely games score is
6-3, whereas if the (slightly) better pair serves in the second game of a set, the most likely game score is 6-4.
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Given that the number of games won by each team is used in a countback situation, it would be fairest for
one team to serve first on one court and the other team to serve first on the parallel court. Note that two
tosses are then required for the whole match. At present there are 4 tosses, which can result in one team
winning 3 or even 4 tosses, with the resultant unfairness.

The situation in which each team has a first or stronger pair and a second or weaker pair may be relevant
in some team situations played elsewhere. In such situations the two matches played before the cross-over
could be between the two stronger pairs and between the two weaker pairs, or each of the two matches could
be between a stronger and a weaker pair. These two scenarios would lead to (slightly) different court-
wastage statistics, different fixture completion rates, etc. but this has not been studied in this paper. The
software used in this study could be used for such an analysis.

The method for determining the winning team is to count sets firstly, and then games if necessary to
determine the winning team. It can be shown that, if point probabilities are constant, the better team is more
likely to be selected if games are used firstly, and sets secondly. However, the reason that in practice sets are
used first and games second is that this gives each team an opportunity to overcome a period of poor play,
and this is considered an appropriate characteristic for a tennis scoring system. The reader who is interested
in countback methods is referred to the paper by Pollard and Noble (2006).

Using the methods of Pollard (2006), it can be shown that, even in the presence of sun and wind effects,
changing ends of the court after games 2, 6 and 10 is sufficient for fairness in doubles. There is no need to
change after every two games. This could save a little time on present practices.

The results on the number of completed sets in Tables 1-3 are quite sensitive to the time limit N points.
The figures in Table 2 represent best-fit of N to observed match statistics, but it would certainly be useful to
directly collect data such as the number of points played on each court, and the proportion of points won by
the server, etc., for the various grades. This would provide useful additional information on this topic.

CONCLUSIONS

This study considered whether the circumstances of team tennis are such that alternative scoring systems
to those used in tournament play can be useful. The objectives of team tennis at the local competitive level
can differ from those in the tournament setting. For example, the requirements that the players complete a
good percentage of matches, that a high percentage of court-time is used, that a small percentage of court-
time is wasted, etc. have very practical relevance in a time-constrained fixture.

Badge tennis in Sydney was considered as an example of team tennis. Drawn sets at 6-6 (rather than
playing a tie-break game) were scen to be useful in this situation. A scoring system was identified that
resulted in more matches being completed, more matches being won by the better team, a higher usage of the
available court-time, and more matches being won by the better team without the need for countbacks. The
scoring system used no-ad games, first to seven games sets, and drawn sets at 6-6. Otherwise the system was
the same as at present.

Performance of the new system appears to be robust to variations in server ability, gaps in ability
between teams and time limits. The new system could thus be considered for use in some or all grades.
However, it is recommended that more detailed statistics on the present system be collected before any
change 1s implemented, especially of the number N of points that can be played in 2'% hours.

The methodology and results of this study could be applicable to other team tennis situations around the
world, and even to other sports.
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Abstract. The standard model for tennis singles is to assume player A has a probability pa of winning a
point on service, and player B has a probability pb of winning a point on service. Player A is the better
player if pa > pb. Miles (1984) noted that a tennis singles scoring system can be seen as a binomial
sequential statistical test of the hypothesis pa > pb against the alternative hypothesis pa < pb. Noting
Wald (1947) had recommended alternating statistical trials (a, b, a, ...), AL, for this two-sample binomial
hypothesis test, he proposed the scoring systems WI1(Wn(ALa), Wn(ALb)) as the standard scoring
systems against which any singles scoring system could be assessed. He called such systems ‘biformats’
because of their two-part structure. In doubles there are four players. Pair A has probabilities pal and pa2
of winning a point on service when players Al and A2 serve respectively. and correspondingly pair B has
probabilities pbl and pb2. In this paper a doubles biformat structure for testing the hypothesis that pair A
is better than B versus the alternative hypothesis that pair B is better than A, is established. As in singles,
this scoring system can be used as a benchmark against which the efficiency of any doubles scoring
system can be assessed. Thus. the relative efficiency of the various scoring systems presently used in
doubles can be assessed. Further, Further, the methods of this paper can be applied to a match between
two teams of 2, 4, 8. ... doubles pairs.

Keywords: efficiency of tennis scoring systems, play-the-loser, volleyball, team tennis.

INTRODUCTION

In a very elegant paper, Miles (1984) noted the link between sports scoring systems and sequential
statistical hypothesis testing, and the following few paragraphs outline the essential features of his
contribution to scoring systems in that paper. One important characteristic of a scoring system is its
efficiency. (Other important characteristics include the mean, the variance, and the skewness of the number
of points played, and the probability that the better player or better team wins when that scoring system is
used.) If two scoring systems SS1 and SS2 have the same probability of correctly identifying the better
player, SS1 is said to be more efficient than SS2 if it has a smaller expected number of points played. Here
we identify how the efficiency (a simple numerical value) of a scoring system can be determined.

Unipoints

Many sports consist of playing a sequence of points each of which is won by either player A or player B.
If there is only one type of point in the match, we have unipoints in which p (q) is the probability player A
wins (loses) each point (p + q = 1). Player A is the better player if p > 0.5. Miles (1984) considered fair
scoring systems possessing sensible regularity conditions and only one type of point, which he called
uniformats.

For testing the hypothesis Hy: Player A better than player B,  versus
the alternative hypothesis H,: Player B better than player A,

he applied the result of Wald and Wolfowitz (1948) to conclude that there is a unique class of optimal
uniformats, given by the Sequential Probability Ratio Test, and that it is {W,} (n = 1,2,3,...) where W/, is the
uniformat in which the winner is the first player to achieve a lead of n points over his opponent. The key
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characteristics of W, are P,, the probability that player A wins, and ,, the expected number of points played.
They are given by

F=p"1p"+q")
#, =n(l, =0, )(p~q)
where (), =1 P, and the efficiency of a general uniformat with key characteristics P and p is given by

S (P-O)In(P/Q)
#p-q)in(p/q)

Bipoints

If there are two types of points (a-points when player A serves, and b-points when player B serves), we
have bipoints. The probability player A wins a point on service is p,, and the probability player B wins a
point on service is p,. Player A is the better player if p, > py. For the bipoints situation, Miles (1984)
considered fair scoring systems with sensible regularity conditions, which he called biformats.

Noting that Wald (1947) had recommended the use of paired trials for comparing two binomial
probabilities (Ho: p. > p» Vs Hy: py > pa), Miles (1984) set up {W,(point-pairs)}, wheren=1,2, 3, ..., as the
standard biformat family of scoring systems (with unit efficiency) against which the efficiency of any tennis
singles scoring system could be measured (e.g. Pollard & Noble, 2004). Here, point-pairs represent the
playing of pairs of points consisting of an a-point and a b-point.

He showed that the efficiency of a general bipoints scoring system with mean p and probability P that
the better player wins, is given by

__ AP-Q)In(P/Q)
u(p, - p,)n(p,q,/p,q,)

where Q=1-P,q,= 1 -p,and q, = | - ps». He also set up what he called the reversal biformat W (W,AL",
W,AL"), where the superscript represents the first type of point played, and AL represents alternating point
types played (e.g. ababab...), and (W,AL", WnALb), operating like a point-pair, results in a win by player A,
a draw, or a loss by player A. Pollard (1986, 1992) showed that W (W,AL?, W,AL") was stochastically
equivalent to the scoring system W (point-pairs). Note that in both of these scoring systems, P and p do not
depend on the type of the point first played.

Using the play-the-loser mechanism (PL) in which a win by player A (B) is followed by a b- (a-) point,
Miles (1984) showed that the family of reversal biformats {W,(W,PL* W,PL®)} (n=2, 3, 4. ...) was slightly
more efficient than {W,(point-pairs)} (n =1, 2, 3, ...) when p, + p, > 1, which is the tennis context. Pollard
(1986, 1992) showed that this PL family of scoring systems was not only more efficient than the AL or
point-pairs family of systems, but that it (and its stochastic equivalent, for example, one based on PL
generalized point-pairs) was the most efficient possible. (Note that when using PL generalized point-pairs, a
win to A (AA) is followed by a (b, b) point-pair, a draw (AB) is followed by an (a, b) point-pair, and a loss
to A (BB) is followed by an (a. a) point-pair.) He showed correspondingly that the family of play-the-winner
reversal biformats {W,;(W,PW* W,PW")! (n=2, 3, 4. ...} is optimally efficient when p, + p, < 1 (which is
the volleyball situation).

If Py (Qx) denotes the probability that player A wins (loses) in k points, then a scoring system is said to
have the constant probability ratio property (c.p.r.) if P,/Q, is constant for all k for which Qy > 0. Pollard
(1992) showed that the above families of AL, PL and PW scoring systems possessed the c.p.r. property.

Quadpoints

In tennis doubles, we have four probabilities, p,i, p.2, pvt and py; (using an obvious notation), so it is
natural to call this situation quadpoints. Using these four probabilities, Pollard (2005) showed that a first to
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six games rule for a set of tennis could be unfair in some doubles situations, as could the present ‘first to
seven’ and ‘first to ten’ tic-break games rules. Also, Pollard (1986, 1990) carried out research on the
asymptotic efficiencies of some quadpoints W, systems (for large n). He noted that some complex W,
systems could be decomposed into smaller independent components called modules, which could in turn be
analyzed to produce approximate asymprotic values for P, p and p for the whole system. In a natural
extension of point-pairs, he set up a basic module consisting of the 4 points {al, bl, a2, b2}, which we call
‘point-quads’. He also considered a second module, called PLcams, using PL and generalized point-pairs in
the following way. The first section of the PL..ms module starts with an (al, bl) point-pair, and the PL
mechanism operates in the following way. A point-pair win to pair A, (AA), is followed by a (bl, b2) point-
pair whilst a point-pair win to pair B, (BB), is followed by an (al, a2) point-pair. The first section of the
module finishes as soon as a draw, (AB), occurs, and the second section of the module begins with a point-
pair (a2, b2), and proceeds in the same manner as above until a draw occurs, thus completing the whole
module. He showed that, provided the modulus of (p. - p.:) equals the modulus of (py; - pe2), PLtcams
(PW,eams) modules used in conjunction with W, systems (n large) are asvmptotically more efficient than the
{W(point-quads)} (n large) system when ((paitpa2)/2 + (poitpr2)/2) is greater (less) than 1.

In this paper some quadpoints results are established for non-asymprotic cases.

METHODS

Recall that in doubles we have four service probabilities p,;, p.:, Pv; and pyo, using an obvious notation.
In order to establish the efficiency of a doubles scoring system we need to set up an appropriate structure so
that P and p do not depend on the order of the four points being played. This suggests setting up the family
of scoring systems {W (W (W.AL(al, bl), W,AL(a2, b2)), Wi(W.AL(al, b2), W.AL(a2, b1)))} (n=1, 2, 3,
...) as the standard scoring system against which the efficiency of any doubles scoring system can be
measured. Here AL(al, bl), AL(a2, b2),...have obvious meanings. Note that AL(al, bl) is stochastically
equivalent to (al, bl) point-pairs.

An expression for the efficiency of a general doubles scoring system is now derived. Firstly we note that
the above scoring system has four components, each with an AL structure. The component listed first,
W.AL(al, bl) has characteristics Py, 1, and O, given by

B =(pa95) (Pabn + Poida)

# =R =ONAPy—Py)

Q1 =1-A
where P is the probability pair A wins this first component, and z, is the mean duration of (or the expected
number of points played in) this first component.

It is noted that W,AL(al, bl) has the c.p.r. property, and that x, i1s equal to the mean number of points
conditional on pair A winning, and is also equal to the mean number of points conditional on pair A losing
(Pollard, 1992). This fact is used in the following analysis.

Corresponding expressions for P, Q; and y;, for the second component can be writien down.

The first half of the above scoring system, W;(W.AL(al, bl), W,AL(a2, b2)), is now analysed. This first
half of the scoring system amounts to playing W,AL(al, bl) and W,AL(a2, b2) until one pair wins both
components. If these two components are won by different pairs, the process is repeated until one pair wins
both. It can be shown that W (W,AL(al, bl), W,AL(a2, b2)) has the c.p.r. property. The probability pair A
wins this half of the above scoring system is given by

B, =(BP)RP+Q Q)
and the expected duration of this first half is given by
My =+ p0)(1-R, )

where R ; is the probability that the pairs each win one component of this half, and is given by
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R,=1-(KP+Q0,)

The second half of the above scoring system can be analyzed similarly giving corresponding results.
Combining the results for the two halves of the scoring system, we have, using an obvious notation,

R.s.=(BRRE)EPEP + 00,0.0,)
Hoaag =+ JIA-R 5,
=R ,,, =(REAP, + QO.0.0)((RP, + QONEP, + 0:0,))

Thus, for the complete scoring system (general n), which also possesses the c.p.r. property, the
probability pair A wins, P, and the mean number of points played, x, , satisfy the equations

P, /Qn = (Px‘z‘s,;}/Qx,z,u )
M, =(n(F, -0 )/ Basa— Q1,2,3.4 ))/‘1‘2‘3‘4

The efficiency of a doubles scoring system with mean u and probability pair A wins equal to P, is now
considered. The efficiency is equal to /it where 1, is the mean of the above standard scoring system with
the same P value (i.e. P = P,). Noting

2n=n(F,/Q,)/ (P, P90 s: | PrPr9adsr)

and the above expression for x, , the efficiency p of a general doubles scoring system with probability P and
mean y is given by i

p=((P-0Q) In(P/ OVt 5 3 W2U(E 55,4 — Q23 )P P92 ! PorPs290942))
Expressing 41234 and (Py 334 — O123.4) as functions of pai, pa2, pvi and py2, we have, after some algebra,

_ S P Pas s Pois Pox P — Q) In(P/ Q)
MNP P GuTsy ! PoiPs290b0:)

where

FPats Pazs Poas Po2) = (P + P X1 + G52) + (Por + P Xy + GNP Pornss = P Pordaa2)
This is the general expression for the efficiency of a doubles scoring system. Note that when py = paz = pa
and py; = py2 = pu. this expression is equal to expression given in the introduction for the efficiency of tennis
singles scoring systems.

The efficiency of {W,(al, a2, bl, b2)}

The efficiency of the W, systems using sets of the four points at a time, called point-quads, is
considered. (Note that this system involves playing sets of 4 points, and then making a decision as to whether
pair A has won or lost, or the match continues). This system is a natural extension of point-pairs to the
quadpoints case, and we might expect it to have unit efficiency, as in the point-pairs case. As in the paper by
Pollard (1990), this set of four points is called a module. The independent modules effectively become the
steps of a general one-dimensional walk in discrete time. Using the approach and notation of Cox and Miller
(1965, p. 46-58), the steps in the random walk, Z; , are mutually independent random variables on the
integers ..., -2, -1, 0, 1, 2,... and the moment generating function (m.g.f.) of Z; is defined by

1*©0) = Y en(jOPCZ,= )

If P(Q) represent the probability of absorption in states [a, infinity) ((-infinity, -b]), and E(N) is the
expected number of steps to absorption, then, neglecting the excess over the barriers,

P1Q = (1-exp(G,h)) (exp(—6a) 1) when E(Z) # 0 and
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E(N)=(a+b-aexp(6,p)—bexp(—6,a)) ( E(Z, ) exp(—6,a) —exp(6,h)) when E(Z) #0,

where 0, is the non-zero solution of the equation f#(6) = 1. For W, we set a and b equal to n. Also, the
random variable S ( = Z)) is used to represent the increase in pair A’s score (i.e. the better pair’s score) during
the play of one module, and D is used to represent the expected number of points in the play of one module.
It can be seen from above that the efficiency of system | relative to system 2 is given by the expression

el pr =((B-0)In(R/0)/ 1) (L _Qz)]n(Pz/Qz)/,uz).

Using the above expressions for the ratio P/Q and E(N), and representing W (point-quads) as system 1|,
and the above standard system as system 2, we have

o,/ p, = (exp(exp(—n6,) —exp(—nO)))WE(D, / 8,E(S,)(E(D,/ 6E(S,)).

where 0, and 8, are the non-zero solutions of their respective equations.

It turns out that the efficiency of Wy(point-quads) (n = 1, 2, 3, ...) is slightly less than unity. For
example, when p,; = 0.9, p.; = 0.8, pr; = 0.7, and py; = 0.6, it can be shown that E(D,) = 4, E(S,) = 0.8, and
exp(0;) = 1.7650, and E(D;) = 39.7541, E(S;) = 7.8502, and exp(6;) = 1.7908 (note that exp(46,) =
(Pa1Pa2qb1G02 ) (PoriPr2a19a2)). and it follows that, when n = 30 say, pi/ p2 = 0.9876, which is slightly less than
1. A few differences between systems 1 and 2 (or their modules) are noted here. A module of system 2 has
the same expected number of a- and b- points in total, but the expected number of al-points is not equal to
the expected number of a2-points, and the expected number of bl-points is not equal to the expected number
of b2-points (For example, these are 103159, 9.5611, 10.8192 and 9.0579 respectively in the above
example). Also, system 1 can have excesses of 1, 2 or 3 over the boundaries, whereas system 2 cannot have
any excesses.

The efficiency of some PL and PW quadpoints systems

In this section we consider whether the PL and PW service exchange mechanisms can be used to find
super-efficient scoring systems for quadpoints, as has been noted was possible in the case of bipoints. We
firstly consider {W (W (W:nPL(al, bl), W,,PL(a2, b2)), Wi(Wy,PL(al, b2), W>,PL(a2, b1)))} (n=1, 2, 3,
.om=2 3 4 .)). Note that W,,PL(al, bl), for example, is the generalized PL point-pair structure
described earlier that makes use of the Wy, stopping rule.

For the first of the four components, W,,,PL(al, bl), we have, using a similar notation to above,

2m-1 Am—1

2m—1
R=p.9" APuln + Pl )
th =R =)+ (m=D(py + PaIN(Poy — D)

Similar expressions for the other three components can be written down. Firstly, the case whenn =1 is
considered. Using similar methods to above, expressions for P34 and 4, 234 can be determined for this PL
scoring system, and it can be shown by substituting these expressions into the formula for p above that the
efficiency of this PL system is less than unity for all m =2, 3, 4, .... Table | has values for the efficiency of
this PL system whenn=1 and m =2, 3, 4 and 5, when p,; = 0.9, p,» = 0.8, py; = 0.7 and py» = 0.6. This table
also gives values for the efficiency of the corresponding alternating and play-the-winner scoring systems
W, (Wi(WapAL(al, bl), Wo,AL(a2, b2)), Wi(Wi,AL(al, b2), W, AL(a2, b1))} (n=1,2.3,...;m=23,
4, ...)) and {W (W (W,,PW(al, bl), W,,PW(a2, b2)), Wi(W.PW(al, b2), W-,PW(a2, b))} (n=1, 2, 3,
....om=234 ), for the cases whenn=1landm=2,3,4and 5.

It was observed that the efficiency of all of these systems (when n = 1) is less than unity as soon as m is
greater than unity. It is clear that the efficiency of these systems when n is greater than 1 (and m is not unity)
must also be less than unity. Thus, it was concluded that it is not possible to use these PL and PW
mechanisms in the above manner to increase efficiency above 1. The fact that the efficiencies of these
systems are less than | (when m is greater or equal to 2), appear to be somewhat akin to the fact that
efficiencies drop below | when scoring systems are nested using nests that are not entirely W systems.
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The efficiency of some other PL and PW quadpoints systems

For the non-asymptotic situation, can the PL mechanism be used in another way so as to achieve
efficiencies greater than 1? Here we consider the PL,.,,, module approach mentioned in the introduction. For
example, for this module as defined, when p,; = 0.9, p., = 0.8, p,y = 0.7 and py; = 0.6, it was shown
numerically that § was approximately 0.8642 and E(D)/E(S) was 7.5 for each ‘half’ of the module. (It was
verified numerically that E(D)/E(S) for this module is in general equal to (pa1 + Paz + Pot + Pv2)/(Pat + Paz2 — Poi
— pw2)- The value for 0, however, needed to be calculated numerically. Thus, for these parameter values,
E(D,)/(6:E(S;)) is equal to 8.6909 (from above), and E(D;)/(8:E(S))) is equal to 8.6785, so the ratio is
1.0014. When n = 30, exp(exp(-nb-)-exp(-n6,)) = 1.0000, so the efficiency of this W3o(PLeums) relative to the
standard system is equal to 1.0014 when p,; = 0.9, p,, = 0.8, pyy = 0.7 and py, = 0.6. Thus, in the tennis
context, for quadpoints just as for bipoints, it appears that it is possible to use the PL mechanism to achieve
efficiencies greater than 1. However, it is noted that the PL,.,,, module defined in the introduction should be
extended so that it includes two additional components beginning with (al, b2) and (a2, bl). This has not
been done, and so cannot be reported on. However, as in the bipoints case, any increases in efficiency above
| are expected to be miniscule. Correspondingly, when the underlying p-values are less than 0.5 as in
volleyball, the PW mechanism should be able to be used to achieve efficiencies marginally greater than 1.

The above module, PLam, made use of point-pairs. However, a corresponding module making use of
points rather than point-pairs can be formed. This is done by using the PL. mechanism between teams but
alternating the points within each team. It was verified that the value of E(D)/E(S) was again given by (pa +
Paz + Poi + Po2)/(Par + Paz — Por — Pu2), and that exp(6y) was the square root (since points rather than point-pairs
are involved) of its value for the PL .. module. Thus, these two modules are equivalent. The advantage of
this formulation, however, is that it can be extended to multi-points (al, a2,..., an; b1, b2,...,bn) (n=3,4. 5,
...) by ‘rotating’ or ‘cycling’ through the relevant points within each team rather than alternating them. This
result (when n = 4) is relevant to the situation where there are two teams of two doubles pairs (i.c. al, a2, a3,
a4; bl, b2, b3, b4), even though ‘rotating’ or ‘cycling” would be impractical as it would involve (amongst
other things) players going on and off the court continuously. Nevertheless, a relative measure of efficiency
in this team situation could be evaluated. It can be seen that this paragraph is related to the next section.

Table 1: The efficiency of the PL, AL and PW systems when p,; = 0.9, p, = 0.8, ppy =0.7 and py, = 0.6

pwhenn=1 PL AL PW
m=| 1 1 |
m=2 0.9477 0.7622 0.5701
m=3 09139 0.6888 0.4585
m=4 0.8989 0.6526 0.4055
m=>35 0.8926 0.6322 0.3742

An extension of the quadpoints systems

Suppose team A has two doubles pairs represented by [(al, a2), (a3, a4)] and team B has two doubles
pairs represented by [(bl, b2), (b3, b4)]. Then, denoting the above quadpoints standard scoring system
{Wi(W(W,AL(al, bl), W>AL(a2, b2)), W (W:AL(al, b2), W,AL(a2, b1)))} by SS(al, a2; bl,b2), it follows
that W,(W,(SS(al, a2; b1,b2), SS(a3, a4; b3.b4)), W1(SS(al, a2; b3,b4), SS(a3, a4; b1,b2))) (n=1,2, 3,...)
has the c.p.r. property, and is the corresponding standard family of scoring systems for two teams with two
doubles pairs per team. Thus, it can be used as the standard family of scoring systems against which to assess
the efficiency of team doubles with two pairs per tcam. In the same way, this process can be extended to
teams of 4 doubles pairs, 8 doubles pairs, etcetera.

CONCLUSIONS

In a very elegant paper, Miles (1984) established a method for determining the efficiency of a singles
scoring system in tennis, which is typically modeled with two probability parameters. In tennis doubles there
are four players. Pair A has probabilities p,; and p,» of winning a point on service when players A, and A,
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serve respectively, and correspondingly pair B has probabilities py; and pre. In this paper a family of standard
scoring systems for testing the hypothesis that pair A is better than B versus the alternative hypothesis that
pair B is better than A, is established. As the characteristics of this family of scoring systems do not depend
on the order of the four types of points played., it is possible to develop the efficiency of any doubles scoring
system relative to it. Thus, this scoring system can be used as a benchmark against which the efficiency of
any doubles scoring system can be evaluated. This is particularly useful as there is a range of scoring systems
presently used for doubles. It has been shown that the efficiency of a doubles scoring system can be
expressed as a single formula, similar to the case of singles tennis. The standard family of scoring systems
that has been set up is very efficient, and has been given an efficiency of unity. It has been shown that, as in
singles tennis with two parameters rather than four, there appears to be a family of ever-so-slightly more
efficient systems that make use of the play-the-loser (or play-the-winner) service exchange mechanism. As in
singles, this super-efficient family of scoring systems is of theoretical rather than sporting relevance.

The methods of this paper can be applied to a match between two teams of 2, 4, 8, etc. doubles pairs.
That is, it is possible to establish a yardstick for the efficiency of such team contests.

The standard family and the super-efficient family of scoring systems for singles were seen to have
applications in the munitions-testing and drug-testing situations where large variations in the number of trials
required for the test are not necessarily the problem that they can be in tennis. In a similar way, it would
appear that there may be use for this new family of tennis doubles scoring systems in such contexts.
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Abstract. In recent times a range of best of five and best of three sets tennis scoring systems has been
used for elite men’s doubles events. These scoring system structures include advantage sets, tie-break sets.
match tie-breaks, tie-break games, advantage games and no-ad games. Several tournament organizers,
tennis administrators, players and ATP Tour representatives are interested in comparing the characteristics
of these various scoring systems. These characteristics include such things as the likelithood of each pair
winning, and the mean. the varance, and the ‘tails’ of the distribution of the number of points played
under the various systems. In this paper these characteristics and the distribution of the number of points
in a match are determined for these various doubles scoring systems at parameter values that are relevant
for elite men’s doubles. Advantage games and no-ad games, both approved alternatives within the rules of
tennis, are considered, as is the ‘50-40 game.

Keywords: new scoring systems for men’s tennis doubles, no-ad and *50-40° games of tennis.

INTRODUCTION

In a match of tennis, points are played to determine the winner of a game, games are played to determine
the winner of a set, and sets are played to determine the winner of a match. Traditionally, a game is the best
of six points, but if the score reaches 3-3, play continues until one player leads by two points. A traditional
advantage set is the best of 10 games, but if the games score reaches 5-5, play continues until one player
leads by two games. A match is the best of 5 sets, or the best of 3 sets.

This scoring system survived unchanged throughout the amateur era until 1968 when tennis was opened
up to professional players, and tournaments became major television events. The first significant change was
the introduction of the tie-break game at six games all in all sets (except in some cases the last set) to
determine the winner of a set. Also, all ATP Tour tournaments gradually reduced men’s doubles and then
men’s singles to best of 3 sets. More recently, men’s and women’s doubles on the ATP and WTA Tours have
introduced sudden death or no-advantage scoring at deuce so that whoever wins the next point (instead of
leading by two points) wins the game. They have also replaced the last set with an extended tie-break game,
known as a match tie-break (10 points).

These and other recent modifications to the traditional scoring system were primarily designed to address
the fact that the requirement to lead by two points to win a game, or lead by two games to win a set, produces
a match of unknown and quite variable length that leads to considerable scheduling difficulties for
tournament organizers and television coverage in particular. It was also hoped that these changes would
encourage top singles players to compete in the doubles as well, but the principal objective, however, was to
decrease both the mean and the variance of the length of a tennis match.

Very little research has been carried out on the effect of the various scoring system options on the mean
and standard deviation of the length of tennis doubles matches. Pollard et al. (2007) studied the effect of the
most recent changes to the scoring system used for men’s doubles for ATP Tour events.
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In this paper the traditional and all of the commonly used scoring systems in professional tennis are
analyzed as well as other possible systems in order to advance the prime objective of reducing the length and
variance of a tennis match without significantly affecting the overall probability that the better pair would
have won if the traditional scoring system was still in place.

The following eight scoring systems have been identified and analysed using advantage games. These
systems are called systems 1(a) to 8(a).

1. Best of 5 advantage sets. The traditional men’s scoring system, allowable under the International
Tennis Federation's ‘Rules of Tennis 2008’, but no longer in use.

2. Bestof 5 sets, first four tie-break and fifth set an advantage set. Used in men’s singles Grand Slams
{except the US Open) and Davis Cup singles and doubles, as well as men’s doubles at Wimbledon.

3. Bestof 5 tie-break sets. Used in men’s singles at US Open and final of Tennis Masters Cup.

4. Best of 5 sets, first four tie-break sets and fifth set a match tie-break (10 Points). Not currently used
but a possibility under the present rules of tennis, and consistent with system 8. below.

5. Best of 3 advantage sets. The traditional scoring system for women and shorter men’s matches,
allowable under the Rules of Tennis 2008, but not presently in use.

6.  Best of 3 sets, first two tie-break and third set an advantage set. Used in women’s matches at Grand
Slams (except the US Open) and at the Federation Cup.

7. Best of 3 tie-break sets. Used in doubles at most Grand Slams (not Wimbledon), and also used for
women’s singles at US Open and for men’s and women’s singles on ATP and WTA Tours.

8. Best of 3 sets, first two tie-break sets and third set a match tie-break (10 Points). This is used for
mixed doubles at most Grand Slams, and for doubles on the ATP and WTA Tours.

Given that the ATP and WTA have now introduced no-ad scoring at deuce for doubles on their Tours,
the above analysis was repeated using no-ad games. These scoring systems are called systems 1(b) to 8(b).

Also constdered is the ‘50-40° game scoring system (Pollard & Noble, 2004), whereby the server is
required to reach 50 (i.e. one more point than 40) before the receiver reaches 40 in order to win the game,
whilst the receiver wins the game by reaching 40. The above cight systems using this *50-40 game are
called systems 1(c) to 8(c). Thus, in total, 24 scoring systems are considered in this paper.

In tennis the server has an advantage over the receiver and, therefore, a greater than 50% chance of
winning the point. This chance is generally greater for men than for women, greater on grass than on clay,
and greater in doubles than in singles. The focus of this research is on professional men’s doubles, where
‘long matches’ can be an issue and where alternative systems are being trialed. For this reason, the analysis
in this paper considers situations where the probability of the server winning the point varies from near 0 60
to near 0.75. Given that the relevant point-probability values for the servers depend on a range of things such
as serving form on the day, the receivers’ form on the day, the rankings of each pair, the court surface, the
weather conditions, etc., it was considered that this range from 0.6 to 0.75 represented an appropriate range
for covering men’s professional doubles matches, at the present time and into the future.

For this analysis, the length of a match is measured by the number of points played under the various
scoring systems. Obviously the actual time to play the match (in hours and minutes) also depends on other
factors such as the court surface and the style of play. For example, the average time taken to play a point on
a clay surface is typically longer than the time taken on a grass surface. Also, some players are known to
play ‘longer’ points than others, and/or take more time between points. These factors have not been
considered in this paper, but could be ‘factored-in’ by using additional information.

Following the changes in 2006 to the best of 3 sets scoring system used for men’s doubles in a range of
professional tournaments, there are now several scoring systems commonly used for professional men’s
doubles. In this paper the characteristics of the various scoring systems presently used in men’s doubles or
ones currently available under the Rules of Tennis 2008, are determined, and displayed in a quantitative
manner. The various scoring systems are then compared with the view to determining how well they achieve
the types of objectives mentioned above. The primary objective of this paper was to evaluate the
characteristics of the present doubles systems, used or allowable under the rules. Given the research nature of
this publication, however, it was considered appropriate to consider the merits of a new game scoring
system, not in the Rules of Tennis 2008, but one that looked particularly interesting with regard to its
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possible use in men’s doubles. This new game scoring system, the ‘50-40’ game, is considered in the next
paragraph. It is noted that its possible use in best of 5 sets matches has not previously been studied.

The usefulness of the ‘50-40" game, particularly in men’s doubles, has been noted (Pollard & Noble,
2004). They noted that, for the p-values relevant to professional men’s doubles matches (values typically
greater than 0.60), ‘the longest [best of 3 tie-break sets] matches (as measured by the 98% point in the
distribution of the number of points played) can be reduced by about 30 points [by using ‘5040 games
instead of no-ad games|’. They also noted that for such p-values ‘the probability player A wins [a best of 3
tie-break sets match] using ‘50-40" games is comparable to when using no-ad games, even though about 20
less points are required on average’. Note that the seventh point in the no-ad game creates a lack of
symmetry with respect to serving to the right half or the left half of the court, and also creates a potential for
unfairness, but these two issues are removed by using the ‘50-40° game. Thus, it would appear that the ‘50-
40’ game has some merit relative to the no-ad game for men’s doubles.

What are the desirable (statistical) characteristics of a good tennis scoring system? The ‘three-nesting’
aspect of tennis (points, games and sets) is taken as a given or fixed part of tennis scoring systems, as it
allows either player to overcome a period of poor play. Games and sets might be made longer or shorter than
at present if there is an advantage in doing so. It is fundamental, however, that a scoring system should have
an appropriate average number of points played, and an appropriate value for the probability that the better
player wins. Also, the standard deviation of the number of points played should not be too large, so that
matches have a reasonably predictable duration. Strongly positively skewed distributions of duration are to
be avoided as, under such scoring systems, very long matches can result, and this can delay the matches that
follow, can lead to unfairness in the tournament setting, and is obviously an issue for television. Scoring
systems with good efficiency at correctly identifying the better player are preferable to ones with not-so-
good efficiency. Given that a men’s doubles tournament involves matches between very strong servers as
well as matches between weaker servers, what is needed is a scoring system that works satisfactorily at both
ends of this spectrum. This is an important consideration in selecting a tournament scoring system.

Given that the above characteristics need to be considered before adopting a tournament scoring system,
compromises may need to be made between them when choosing one particular scoring system over another.

ANALYSIS OF VARIOUS SCORING SYSTEMS

For the 24 scoring systems under consideration, the probability that the better pair wins the match, and
the mean and higher moments of the number of points played, were evaluated using recursion methods. The
details of this (exact) recursion method are omitted here, but are available (Brown et al., 2008).

The process used to estimate the distribution of the number of points in a match required some care
since, for a best of 3 sets match, it may be bi-modal, depending upon the design of the third set. Furthermore,
a distribution is not uniquely determined by its moments. To overcome these difficulties, the distributions for
matches requiring 2 sets or 3 sets to complete were estimated separately. This was done using the Normal
Power approximation, and the first four moments of each distribution. The Normal Power approximation
uses a basic assumption that the distribution is uni-modal, and it would be inappropriate to use it in
conjunction with the statistics for an overall match. The probability weighted sum of the two distributions (or
three in best of 5 sets matches) was used to estimate the distribution of the number of points in the overall
match, from which the 98% point was obtained by interpolation. This point in the distribution is used as a
measure of ‘long’ matches. This method was used in earlier work (Pollard et al., 2007). Further, the results
agreed with those in the paper by Pollard & Noble (2004), who used simulations of 1,000,000 matches. With
the exception of some cases of the 98% statistic, all statistics agreed with simulations of 4,000,000 carried
out by the authors in 2008, and with other exact results (Pollard, 1983). If a difference of more than 2 points
existed in the two estimated 98% statistics, the simulated value was reported in the tables.

We note here that two scoring systems can be compared for their efficiencies (at correctly identifying the
better pair). Thus, given scoring system 1 and scoring system 2 with the same expected number of points
played in a match, scoring system | is said to be more efficient than scoring system 2 if scoring system | has
a higher value for the probability that the better pair wins the match. The efficiencies of scoring systems with
differing values for the expected number of points played can also be evaluated, as in the elegant paper by



Miles (1984). It is noted here that scoring systems with high efficiencies (i.c. efficiencies close to 1) typically
have particularly large standard deviations, and hence are not appropriate in the sporting context.

The best of 5 sets systems 1, 2, 3 and 4 above using (a) advantage games, and (b) no-ad games, being
approved tennis scoring systems, are considered firstly, and then these systems using (c¢) *50-40° games are
considered. The following questions were considered. What are the characteristics of these various scoring
systems? What are the differences between them? Do some of them have good/not-so-good characteristics?

Five characteristics are sufficient to make relevant comparisons of the above scoring systems. They are
P(A wins) where A is the better pair, the mean and the standard deviation of the number of points played, the
efficiency of the scoring system, and the 98% point of the cumulative distribution of the number of points.

These five statistical measures were evaluated for a range of p, (the probability pair A wins a point when
serving) and py (the probability pair B wins a point when serving) values. This range covered p-values of
0.60, 0.65, 0.70 and 0.75, with pair-deviations of 0, plus and minus 0.02, and plus and minus 0.04. A close
mspection of all of these results indicated that it was sufficient to report on just the results for p-values near
0.60 and for p-values near 0.75, as the results for the intermediary parameter values lay between the results at
these values. Thus, the statistical measures reported in table 1 are for matches at the ‘strong-serving’ end (p,
=0.77, py = 0.73), and at the ‘weaker-serving’ end (p, = 0.62, p, = 0.58) of the above range.

It is useful to introduce a definition at this stage. We say a scoring system X is ‘a better scoring system’
than scoring system Y if it has an equal or larger P(A wins) value, an equal or smaller mean, an equal or
smaller standard deviation, an equal or lower 98% point, and an equal or greater efficiency (provided there is
at least one inequality). It is noted that if scoring system X is better than scoring system Y, and if scoring
system Y is better than scoring system Z. then scoring system X must be better than scoring system Z.

A comparison of the best of S sets systems 1, 2, 3 and 4, using advantage and no-ad games

Firstly, comparing scoring systems 1(a) and 1(b), the means of systems 1(a) and 1(b) for a match
between strong servers are very large (484.3 and 366.7), as are the standard deviations (218.2 and 149.6),
and the 98% points (1049 and 755). Even for matches between weaker servers, the standard deviations and
the 98% points are large ((73.8 and 61.6) and (442 and 377) respectively). It is these characteristics that
caused system 1(a), that survived the amateur era, to be replaced by others in the professional era.

Secondly, comparing scoring systems 2(a) and 2(b), the standard deviations of both systems 2(a) and
2(b) for a match between strong servers, are large (99.5 and 76.7), as are the 98% points (582 and 467). Even
for a match between weaker servers, these statistics are still quite large ((63.6 and 54.2) and (395 and 341)).
Given the size of these characteristics, systems 2(a) and 2(b) (although accepted in Grand Slam singles) are
only really applicable to the finals of important events, where the winners are not required to play another
match on the following day, and in situations in which there is no match scheduled to follow. For matches
between strong servers, scoring system 2(b) is very close indeed to being a better system than system 2(a).

Thirdly, comparing scoring systems 3(a) and 3(b), there is not a huge difference in the means, in the
standard deviations and in the 98% points for the matches between strong servers and those between weaker
servers ((272.0 and 248.9), (261.0 and 229.9); (60.7 and 55.7), (61.6 and 52.7); and (385 and 354), (383 and
333) respectively). Thus, under scoring systems 3(a) and (3b), the characteristics of ‘moderately long’
matches are not hugely different for matches between weaker servers and for matches between strong
servers. It is interesting to note that the P(A wins) values for the matches between weaker servers under these
scoring systems are much the same as their values under scoring systems 1(a) and 1(b), whereas, for matches
between stronger servers, the P(A wins) values are less than those under systems 1(a) and 1(b) (as a result of
the decreased means under systems 3(a) and 3(b)). It can be seen that system 3(b) is a better scoring system
than system 3(a) for the stronger servers. However, for matches between weaker servers, although the value
of P(A wins) for system 3(b) (i.e. 0.721) is less than its value under system 3(a) (i.e. 0.741), its value is
nevertheless greater than the associated value for the stronger servers (i.e. 0.712). The other characteristics of
system 3(b) (except efficiency) for matches between weaker servers are ‘better’ than those of system 3(a).
Thus, from a statistical point of view, system 3(b) could reasonably be preferred to system 3(a).
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Fourthly, considering scoring systems 4(a) and 4(b), the means, the standard deviations and the 98%
points of scoring systems 4(a) and 4(b) are, as expected, less than those of systems 3(a) and 3(b). For the
matches between stronger servers, scoring system 4(b) is better than scoring system 4(a) (whilst, for the
weaker servers, it ‘goes somewhat close’ to being better). It is also noted that, for matches between weaker
servers, although the value of P(A wins) for 4(b) (i.e. 0.706) is less than its value for system 4(a) (i.e. 0.722),
its value is nevertheless greater than the associated value for the matches between strong servers (i.e. 0.702).
Thus, it can be argued that system 4(b) could reasonably be preferred to system 4(a). It can also reasonably
be argued that, if the fifth set is simply a match tie-break, it would seem appropriate to use no-ad games
rather than advantage games during the first four sets.

Scoring systems 1(a) and 1(b) are not considered any further in this paper as they have large values for
the mean, the standard deviation and the 98% point, particularly for the strong servers, and also because they
are no longer in use.

For matches between strong servers, the 98% point for system 3(a) (385) is substantially less than the
98% point for system 2(a) (582), whilst the value for P(A wins) is a little less for system 3(a) (0.708
compared to 0.723). For matches between weaker servers, the decrease in P(A wins) under system 3(a) rather
than under system 2(a) is miniscule (0.741 down from 0.743). It follows that system 3(a) is a very reasonable
alternative to system 2(a).

We have noted above that, from a statistical point of view, system 3(b) might reasonably be preferred to
system 3(a). On the other hand, system 3(b) involves the use of no-ad games, which some players, spectators
and viewers might find less attractive than advantage games. Nevertheless, if a lower mean and a lower 98%
point than those of system 3(a) were required, system 3(b) could reasonably be used.

It can be seen from table 1 that scoring system 4(a) has no overall advantage over system 3(b) either for
matches between strong servers or for matches between weaker servers. Also, we have noted above that
system 4(b) could reasonably be preferred to system 4(a). Thus, if a smaller average match duration is
required to that under system 3(b), system 4(b) could be considered. Judgements about the appropriate
average length (and variation) required for a particular tennis match or tournament, however, are best made
by the tennis enthusiasts, and not by mathematicians.

Summarizing, the conclusions about the best of 5 sets scoring systems presently available, are

1. Systems 2(a) and 2(b) are only really applicable to the finals of important doubles events, where the

winners are not required to play another match within the next few days, and in situations in which

there is no match scheduled to follow.

Across all matches with both strong and weaker servers, the characteristics of ‘moderately long’

matches are not hugely different for the two scoring systems 3(a) and 3(b).

3. From a statistical point of view, all things considered, system 3(b) could reasonably be preferred to
system 3(a), and system 4(b) could reasonably be preferred to system 4(a).

4. If the fifth set is simply a match tie-break, it would be appropriate to use no-ad games rather than
advantage games throughout the first four sets.

5. If a lower mean and a lower 98% point than those of system 3(a) are required, system 3(b) could
reasonably be used.

6.  For a shorter match than under system 3(b), system 4(b) (rather than 4(a)) could be used.

o

A comparison with the best of 5 sets scoring systems using ‘50-40’ games

The four best of 5 sets systems using *50-40° games (see columns (c) in table 1) are now considered, and
the following observations made.

I. For matches between strong servers, scoring system 2(c) is a better scoring system than both 2(a)
and 2(b), scoring system 3(c) is a better scoring system than both 3(a) and 3(b), and scoring system
4(c) is a better scoring system than both 4(a) and 4(b), and, perhaps surprisingly given the number
of points played. scoring system 4(c) is even a better scoring system than both 3(a) and 3(b).



(i)
(iii)
@iv)

Across all matches with both strong and weaker servers, scoring system 4(c) goes very close to
being a better scoring system than system 4(b), and scoring system 3(c) goes very close to being a
better scoring system than system 3(b).

The characteristics of system 3(c) are reasonably similar for the matches between strong servers
and those between weaker servers, as are the characteristics of system 4(c). Thus, any match under
system 3(c) is likely to have quite similar duration characteristics regardless of the serving strength
of the players, and likewise, any match under system 4(c) is also likely to have quite similar
duration characteristics.

Overall, systems 2, 3 and 4 using ‘50-40’ games appear to be at least as good as these three systems
when using no-ad games. Thus, the ‘50-40° game provides a real practical altemative to the no-ad
game, when used for best of five sets matches.

Table 1: The five statistics for the twelve best of 5 sets scoring systems (* are simulated values)
s

P(A wins) (a) (b) (c) (@) (b) (©)

Mean Pa= p.=0.77; p.=0.77; Pa=10.62; pa=0.62; p. = 0.62;
Stand Dev  0.77; pr=0.73 pp=0.73 p» = 0.58 pp = 0.58 p» = 0.58
Efficiency p,=0.73

98% Point
1 (1) 0.778 0.759 0.741 0.752 0.728 0.718
(1) 4843 366.7 2304 274.2 2393 200.1
(i) 2182 149.6 68.2 73.8 61.6 494
(iv) 034 0.38 0.52 0.61 0.57 0.61
(v) 1049* 755% 395* 442* 377* 306*
2 (1) 0.723 0.721 0.730 0.743 0.723 0.715
(1) 2903 259.0 211.7 262.1 230.7 196.6
(i) 995 76.7 52.0 63.6 54.2 46.3
(iv) 0.34 0.38 0.51 0.59 0.55 0.61
(v) 582* 467* 323 395 341 290
3 (1) 0.708 0.712 0.727 0.741 0.721 0.715
(i) 2720 2489 210.0 261.0 2299 196.3
(i) 60.7 55.7 48.6 61.6 52.7 45.7
(iv) 0.32 0.36 0.50 0.58 0.55 0.60
(v) 385 354 306 383 333 286
4 (1) 0.699 0.702 0.714 0.722 0.706 0.700
(1) 255.4 2342 198.7 2455 216.7 185.8
(i) 44.8 41.6 37.7 46.9 40.0 355
(iv) 031 0.35 0.46 0.52 0.50 0.55
(v) 333 308 270 335 291 253

A comparison of best of 3 sets systems 5, 6, 7 and 8, using deuce, no-ad and '50-40° games

The corresponding results for the best of 3 sets scoring systems are given in table 2, and the following
observations are made:

Many of the comments and conclusions on the best of 5 sets systems apply to the corresponding
best of 3 sets systems.

For matches between strong servers, system 6(b) goes very close to being a better system than 6(a),
whilst scoring system 6(a) has a large standard deviation (93.1), and a large 98% point (480). Thus,
it could be argued that system 6(a) is only really applicable to the finals of important doubles
events, where the winners are not required to play another match within the next few days, and in
situations in which there is no following match. It is noted that the corresponding 98% point for
system 6(b) is 366, which is a much better value (than 480) for tournament play.



. For matches between strong servers, system 6(c) is better than 6(a) and 6(b), system 7(c) is better
than 7(b) (which in turn is better than 7(a)), and system 8(c) is better than 8(b) (which in turn is
better than 8(a)). System 8(c) even goes close to being better than system 7(a).

. As with the best of 5 sets systems, the efficiency of all of the (a) and (b) systems is low for matches
between strong servers, whereas it is around 0.5 for the (c) systems. The best of 3 sets systems are,
as expected, slightly more efficient than the corresponding best of 5 sets systems.

. With the exception of efficiency (and the value of P(A wins)), the characteristics of system 7(a) are
quite similar for matches between strong and weaker servers, so the length of matches under system
7(a) are not particularly dependent on the strength of the players’ serves.

. If it was felt that matches under system 7(c) and/or 8(c) were ‘too short’, then playing first to 7
games sets would increase the duration whilst maintaining efficiency and increasing the value of
P(A wins). (It is noted that first to 6 games sets can be unfair (Pollard, 2005), and that the
associated unfairness can be removed by playing first to 7 games sets.)

Table 2: The five statistics for the twelve best of 3 sets scoring systems (* simulated values)
() P(Awins) (a) (b) (c) (a) (b) (c)

(ii) Mean p.=0.77; p.=0.77; p.=0.77; pa = 0.62; p.=0.62; P =0.62;

(iii) Stand Dev p,=0.73 pr=0.73 pr=0.73 pp = 0.58 p,=0.58 pr=0.58

(iv) Efficiency

(v) 98% Point

5 (i) 0.730 0.713 0.698 0.707 0.687 0.678
(i) 298.2 2253 141.2 168.3 146.5 122 .4

(ii1) 165.0 112.1 489 51.6 428 339

(tv) 036 0.40 0.55 0.65 0.60 0.65

) 750%* 533* 269* 295% 250% 200*
6 (1) 0.690 0.686 0.690 0.701 0.683 0.676
(i) 1921 166.4 131.0 161.6 141.8 120.5

(i) 93.1 66.8 379 44.6 37.6 31.7

(iv) 037 041 0.54 0.63 0.59 0.65

(v) 480* 366* 225% 261 226* 188
7 (i) 0.669 0.672 0.686 0.697 0.681 0.675
(i) 166.3 1552 128.6 160.0 140.7 120.1

(iii) 403 37.0 32.6 414 353 30.7

(ivy 034 0.38 0.53 0.62 0.58 0.64

(v) 243 224 196 246 212 183
8 (i) 0.656 0.658 0.667 0.670 0.658 0.655
(i) 1428 131.5 112.5 137.8 122.0 105.2

(i) 218 20.5 199 245 20.5 18.8

(v) 033 0.37 0.48 0.52 0.51 0.56

(v) 187 174 158* 191 166 146

CONCLUSIONS

This paper provides answers for those persons wanting to do something about the undefined length of
tennis matches, where the scoring systems used lead to matches of unpredictable length, with considerable
variation and exposure to excessive length, all of which affect the scheduling, television coverage and
players’ health. Experimentation with modified scoring systems is taking place in professional tennis,
especially in men’s doubles where eight different scoring systems have been used to date. All of these eight
systems have been analysed in this paper, using the usual advantage scoring in each game, no-ad scoring,
and the more efficient "50-40’ game scoring system. Thus, twenty four scoring systems in total have been
analysed and discussed.



Five statistics are sufficient to describe and compare tennis scoring systems. By using these statistics,
one can gain an insight into the effects of selecting one scoring system for a tournament rather than another.

For best of 5 tie-break sets matches, the characteristics of ‘long™ matches are not hugely affected by
whether advantage or no-ad games are used. If tournament organizers require fewer points in such ‘long’
(best of 5 tie-break sets) matches, a match tie-break fifth set and no-ad games throughout, might be used
instead of five tie-break sets. Indeed, the results in this paper indicate that if a match tie-break is to be used
for the fifth set, no-ad games are better (than advantage games) to use throughout the first four sets. For all of
the best of 5 sets systems presently in use, the results show that the use of the ‘50-40’ game would be at least
as good as using the no-ad game, making the 50-40 game a practical alternative to the no-ad game. For the
best of 3 sets matches, similar comparisons exist between the various systems.

At the Grand Slam level, Wimbledon retains best of 5 sets for men’s doubles using scoring system 2(a)
(4 tie-break sets and fifth set advantage). The other Grand Slams have all moved progressively to system 7(a)
(best of 3 tie-break sets) in order to achieve a considerable reduction in the average length of matches, the
standard deviation of the length, and the 98% point for the length of matches. Whilst Wimbledon may not
particularly wish to achieve savings in average length and variation in length for doubles matches, the
analysis in this paper shows that Wimbledon could achieve similar reductions to those in the other Grand
Slam events but retain best of 5 sets structure by using system 4(c) (i.e. 4 tie-break sets and the fifth set a
match tie-break, using ‘50-40’ scoring in the first 4 sets).

The ATP and WTA have sought even greater reductions in length and variation in length of matches, and
are currently using system 8(b) (2 tie-break sets and third set a match tie-break, with no-ad scoring). If they
used system 8(c) (same as 8(b) but -using ‘50-40’ scoring), they would achieve further reductions in mean
length, standard deviation, and in the 98% point, while efficiency would actually improve. Altematively,
they could use system 6(c) (which uses 50-40 games) and thus retain the 3 tie-break sets structure, and avoid
the match tie-break.

In general, tournaments would like much greater control over the length of doubles matches, but
different tournaments may want different average lengths of matches. This paper presents 24 scoring systems
options that tournaments might use to increase the certainty that matches approximate that desired length. It
is argued that it is not appropriate in this paper to be prescriptive about which scoring system to use in one
tournament or another. However, tournament organizers who are interested in two or more scoring systems
for possible use in a tournament can refer to the results in the body of this paper as a guide to making that
decision.
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Abstract. The World Badminton Federation currently rates players based on a moving twelve month
window utilising tournament points. For a players rating to improve. they simply need to win as many
games as possible in as high a quality tournament as possible. The existing system allows for some
graded change of rating beyond a simple win game to increase rating, given that the higher quality
tournament reward players with greater points when successful. Whilst this method goes some way to
grade player ratings, this system has a number of flaws. Firstly it does not account for the quality
opponent, as depth of tournament success 1s the sole rating determinant. Secondly, being a twelve month
window, players’ ratings from a year ago hold the same weight as a tournament completed last week,
thereby not allowing for current form. To overcome these percetved shortcomings, we have created a
performance rating model based on the Elo system that considers players score at the end of each round.
Players will begin with a predicted score based on their rating in comparison to the opposition. The
predicted score will then be compared to the actual score obtained by the player in that round. A new
rating will be acquired based on whether a player performs above or below expectations. The new ratings
will then be discussed in comparison to the current BWF rating system as a descriptive and predictive
tool.

Keywords: Rating, ranking, badminton, Elo

INTRODUCTION

Badminton is the world’s fastest racquet sport. It is played across all continents and by many countries.
Badminton is extremely popular in Europe and Astia. It made its Olympic debut at the Barcelona Olympics in
1992. Competitive badminton is predominantly played under a tournament structure. The Badminton World
Federation (BWF) is the sports governing body. The BWF ranks players using a rating method akin to that
used by the ATP (Association of Tennis Professionals) in tennis. These rankings and ratings are utilised for
tournament seeding and Olympic qualification. In this research we improve upon the existing BWF ranking
method using both optimization and smoothing techniques on an Elo-based model which we call for
simplicity the SORTED model (Smoothed Optimized Ratings with Tournament Estimated Depth). Intrinsic
to this approach are games scores, which capture both a players’ current form, the strength of the opponent,
and the tournament depth. We will show dramatic differences in SORTED and BWF men’s rankings, and
demonstrate that BWF rankings remain a very poor predictor of game outcome at the elite level.

A number of seminal works focus on racquet and tennis-type sport ratings which account for differences
in player rating based on the nuances of sport scoring. Joe (1991) devised a rating system based on paired
comparison models for table tennis and chess. Player performance ratings are adjusted based on comparison
of actual and predicted outcome. This allows lowly ranked players the opportunity to move up in rankings
far quicker than the current system. For example, if a player was predicted to lose by 10 points but actually
loses by five, then they have exceeded the predicted outcome and should therefore move up in their ratings.
This follows the logic of Elo (1978), whose method of ratings chess players is intrinsic to this work.

Strauss and Arnold (1987) looked at rating players in racquetball utilising a markov chain approach. The
authors consider the probability of winning a point based on the strength of server. This is necessary given
that in racquetball to win a point you must first serve. Marcus (2001) develops a ratings model for table-
tennis. The game is similar to badminton in that some players can play over a dozen tournaments a year
whereas some will only play one a year. They develop an algorithmic approach to solving each players
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rating. They differentiate new players from existing players by assigning different distributions. They also
consider time between tournaments, and finalise their work via a reporting system.

Barrie (2003) suggests that ratings be calculated based on an old rating, uncertainty of old rating,
tournament rating and estimated error of tournament to create a new rating. Uncertainties would be smaller
based on the level of experience of the player. This allows for the experience of a player to become a factor.

It also not only takes into account players and opponents scores, but it allows for estimated error in
tournament rating.

Al these papers incorporate the ideas of Elo (1978), which were also applied to men’s tennis in Bedford

and Clarke (2000). In this paper we have created a rating system which builds upon this work, including a
tournament strength variable, and multiple optimisation processes.

METHOD AND RESULTS

At present ratings for badminton are calculated by the BWF (www.internationalbadminton.org) and are
based on an accumulation of points from various tournaments within the current 12 month period. Only
points acquired from their best 10 tournament scores make up their overall points tally which forms the
player rating. Players are awarded points based on which point they are eliminated from a tournament, scaled
by the quality of the tournament. Points from any tournament are only valid for 12 months for ratings. At the
end of 12 months the points are lost and the next best points from another tournament are added. However, if

a player has not accrued new points then they lose their points and possibly drop in ratings. A breakdown of
tournament points earned is given in"Table 1, the values which we shall call D« ;.

Table 1: BWF points by tournament and tournament depth

BWF BWF
World Super Grand Grand International International  Future
D+ Series Series Prix Gold Prix Challange Series Series
Winner 12000 9200 7000 5000 4000 2500 1700
Run Up 10200 7800 5950 4250 3400 2130 1420
SF 8400 6420 4900 3500 2800 1750 1170
QF 6600 5040 3850 2750 2200 1370 920
1\16 4800 3600 2720 1920 1520 920 600
1\32 3000 2220 1670 1170 920 550 350
1\64 1200 880 660 460 360 210 130
1\128 600 430 320 220 170 100 60
1\256 240 170 130 90 70 40 20
1\512 120 80 60 40 30 20 10
1\1024 60 40 30 25 20 10 5

The data required for this model was obtained from the BWF who provided a full excel file of each
tournament down to each players individual result. However the data was not in a suitable format for our
ratings and as a result four separate excel files had to be created to transform the data. Three of the excel files
were different only for the initial number of players in the tournament. The raw data extracted from these
was player number, name, opponent and games score. Added to that was win or lose so that the players

outcome in the game was always known, and tournament type, tournament date and depth of tournament.
The flowchart of the process is shown in Figure 1.
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Figure 1: Flowchart of data import and application of new rating system.
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As seen in Figure 1, the process concludes with optimisation before the SORTED ratings are obtained.
Prior to optimisation we developed a number of formulae to encompass the aspects of individual game data,
and tournament depth. As in Bedford and Clarke (2000), we first determine the value of winning a game, and
set, to a player i, or the observed result, through the following:

0, =yS+G N

where S = total sets won, G = total games won, and y = set multiplier. The SORTED model consists of a
smoothed rating, utilised through the generic formula

R,=R,,, +al0 -E)+1(D,) Q)

ir-1

where R, = ratings of player 7 at time {, @ = smoothing coefficient; £ =expected outcome for player /, and 7
= smoothing coefficient.

The initial trial encompassed tournament variation, as in Barrie (2003), in the hope that by including the
variation in quality of players commencing a stage of a tournament would improve the final prediction
percentage. Barrie (2003) utilised the standard deviation of players in a tournament, and we followed a
similar route using the standard deviation of pre-game ratings as a value of D, ;, that is

D,, =SD({,,}) ()
where {Ri‘,} is the set of players pre-game ratings at stage j of a tournament.

To our logic, a high value of D; as in (3) implies a tournament of low volatility, that is, a theoretically
more predictable result. Inversely, a low value in (3) yields a high volatility, given players ratings are quite
close together. The questioned remained as to what to do with the values in (3). If (3) reflected a volatile
tournament value, then should the ratings have greater or lesser meaning, here realised by weighting into (2),
than a tournament with low volatility? Should an upset in a non-volatile tournament count for more than in a
volatile tournament? Without any presumption, we utilised RiskOptimizer to gain improvements on a basic
model as in (2). For all values within the optimization process, using (3) yielded no improvement and
therefore was excluded from the final model. We later trial another form of D, using the existing BWF points
as detailed in Table 1. Hence the final model includes

D,, = BWF, *

where BWF; = BWF points for player i at stage / as given by Table 1.

The final model, combining (1), (2) and (4), and our modified expectation on pre game ratings, yielded

Ri,: = Rz‘,H + a«[}S + G]f - [75 + G]opp)_ ([Ri,t—l - Ropp‘lfl lﬁil »+ z-(Dz,j ) (5)

The process of optimization was stepwise, using a method developed in Bedford (2004), where the
predicted percentage correct was maximized first, modifying @, ,7and 7, before minimizing error. The
process of optimisation was as follows:

(a) Determine integer-wise best value of set multiplier, y:

Maximise % cotrect by changing @ for fixed ¥y =0,1,...21;r=0,8=5.
(b) Maximise % correct by changing 7 and & for fixed ¥ =3; =5 (based on (a) optimal solution).
(c) Minimise MSE by changing 7 and & for y fixed f=5.

The final SORTED model yielded the values a=0.78,8=15;7=2.96,7 =0.001 for a predicted
correct 75.33% or 1878 out of 2493 games considered. The model was run on 3199 games, however games
whereby either player had plated less than three matches were modeled but not considered, to allow for form
catch-up. Interestingly, the inclusion of tournament depth makes marginal improvements to the results.
Figure 2 shows the changes to the set multiplier and MSE on % correct, and Figure 3 the values of .



Bedford and Clarke (2000) found a set multiplier of six yielded both practical significance as well as optimal
prediction. For tennis, they show that by winning a set, a player is rewarded an additional six SPARKS (Set
Point mARKS), equivalent to (1). Here a value of y = 2.96 seems rather low, tending to suggest that given
badmintons high point count to win a set contributes nearly enough information to determine an appropriate
margin of victory. A detailed example of how the SORTED model works is now shown (Table 2) where
Chong Wei Lee defeats Peter Gade.

Table 2: Semi Final: BWF Super Series; Dec-02-2007

Chong Wei Lee  Peter Gade

R 1361.62 132221
E 7.882129 788213
Result 21-17;22-20
0 11.92273 -11.9227
R, 1369.81 1324.10
75.2 40
75
74.8
74.6 1
E 74.4 4
8 74.2 1
® 74
738 %--
73.6 4
73.4
73.2 Al Al T Al 0
0 5 10 15 20

Y

% ---8--- MSE

Figure 2: Comparison of set multiplier on MSE and % predicted correctly.
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Figure 3: Comparison of set multiplier on smoother and % predicted correctly.

We found the optimal value of @ = 0.77 to be of some interest, given our past research found values of
0.2 or below. This indicates a rapidly reducing contribution of past performances to the current rating.
Consider Figure 4, the top two players in men’s badminton. The BWF have ranked Dan Lin as world number
one for the entire 2007 season, however our model shows a differing result, with Chong Wei Lee overtaking
Dan Lin towards the end of the year. Overall the percentage of correctly predicted games by our rating
system is 75.33%. Compared to the BWF ranking system of only 61.43% predicted correctly, our rating
system far surpasses the BWF in terms of accuracy of prediction.

Digging deeper, we investigated the performance of the BWF ratings to the SORTED model in terms of
a threshold level. To have a game considered both players must be ranked higher than the threshold level, for
example a threshold of 10 implies both players must be ranked within the top 10 according to the BWF
rankings. Figure 5 indicates the distinct gap between the BWF ratings as a predictive tool too that developed
in this research.

1420
1400 - S
1380 4
1360 -
1340 -
1320 - - i
1300 - N e SN
1280 -
1260 , . : .
0 10 20 30 40 50

Game # for 2007

SORTED rate

—e—DanLIN Chong WeilLEE

Figure 4: Top two players season track, 2007.
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Figure 5: % predicted correctly, WBF vs SORTED. based on threshold

We then looked at the final top 10 for 2007, by both the BWF and SORTED model, as shown in Table 3.
Notably, Chong Wei Lee is number one, quite different to the BWF, given that Dan Lin is well in front using
the BWF ratings. The BWF ratings in this instance have not accounted for recent form, and it is near
impossible for Chong Wei Lee to make number one until Dan Lin’s best past performance moves outside the
12-month window.

Table 3: Top 10 comparison at seasons end. 2007

Player Country SORTED Player Country BWF
1 Chong Wei LEE MAS 1373.39 Dan LIN CHN 85394.51
2 Dan LIN CHN 1369.89 Chong Wei LEE MAS 74828.67
3 Sony DWIKUNCORO KOR 1354.87 Chunlai BAO CHN 70530
4 Chunlai BAO CHN 1337.51 Jin CHEN CHN 64800
5 Peter Heeg GADE DEN 1324.10 Peter Heeg GADE DEN 59262.51
6 Muhd Roslin HASHIM MAS 1309.12 Sony DWI KUNCORO KOR 57380
7 Jin CHEN CHN 1303.05 Taufik HIDAYAT INA 57047.8
8 Taufik HIDAYAT INA 1301.76 Kenneth JONASSEN DEN 56264.13
9 Sung Hwan PARK KOR 1291.06 Yu CHEN CHN 54620
10 Kenneth JONASSEN DEN 1287.95 Hong CHEN CHN 48920

Whilst the SORTED model provides a far more accurate method of prediction, its utility as the new
ratings method requires much further investigation. The biggest obstruction to the models implementation is
the points attraction associated with tournaments. Olympic selection and tournament seeding is based upon
the BWF ratings, hence there is strategy involved in selecting which tournaments to attend. A player may
well choose to enter an International Series event in the knowledge of a greater likelihood of high points
(with weaker opponents) than an International Challenge, where the quality of opponent in likely to be
higher. The reward for winning the International Series event is 2500, whereas to gain the equivalent score at
the Challenge event requires at least a semi-final place (see Table 1). If the SORTED model were to be
implemented as a replacement for the BWF series points. then players are likely to enter events solely on the
prize money available, and the quality of opponent. Hence we contended the existing system remains and the
BWF points are utilised within (5), given there is reward i winning at a better quality tournament to a
players rating.
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CONCLUSION

Through optimisation techniques we have developed a ratings model with is vastly superior to the
existing BWF ratings system. We argue that a rating model also provides a greater incentive for players to
chase down every shuttle, and attempt to win as many points as possible, given the point based nature of the
model. We aim to further extend this research to women’s and doubles formats.
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Abstract. In this paper, we will introduce a new player rating system that takes advantage of recent
developments in the collection of Australian Football League statistics. Since 2004, Champion Data have
collected the physical location of all possessions in the competition in addition to information about the
type and quality of possession. Previous work that used these locations to establish a measure of Field
Equity — the scoreboard value of a possession — will form the basis of the player rating system introduced
m this paper. This new system will be an umprovement over current systems, in that it removes the
emphasis on subjective classification of possessions and replaces it with an objective value for the worth
of each possession. Players who consistently win the ball and progress it towards goal will be rewarded
more than players who build a high number of possession without improving the position of their team.
Correlations between game-by-game Equity Ratings and Champion Data player ratings are presented for
each of eight different playing positions. While early results suggest bias towards forward line players,
methods of reducing this bias are presented in order to improve the player rating system so that is fair for
all playing positions. ’

Keywords: AFL, Player Ratings, Equity.

INTRODUCTION

As public interest and media expenditure in sport increases, so does the need for a more in-depth analysis
of team and player performance. Supporters and media commentators alike want to know the standout
players of the game without having to dig through raw statistics. Effective measurement of player
performance could also have applications to the presentation of end of year awards (such as club best and
fairest and the Brownlow Medal) and the evaluation of a player’s true value for use in decisions on trading
and renewal of contracts.

Since player performance and team performance are often hard to separate, rating individual players in
team sports can be problematic. Some recent developments on individual ratings in team sports can be seen
in Bracewell (2003), Bennett (2005) and Schatz (2005). Bracewell uses multivariate techniques and data
mining to reduce the dimensionality of the available data from Rugby matches to find key performance
indicators and quantify player performance. Bennett (2005) uses ‘player game percentages’ to evaluate the
true value of the contributions a player makes within a game, based on the effect a player has on his team’s
probability of winning the game. Schatz (2005) uses a system called defence-adjusted value over average
(DVOA) to rate player performance in American Football. DVOA compares the performance of offensive
players in each successive game situation with the average performance of all teams in the same situation
throughout the season and adjusts the value according to the strength of the defensive team.

One of the most visible uses of player rating systems to the general public is online fantasy football
competitions. With more households connected to the internet every year, these competitions are becoming
increasingly popular, with over 206,000 teams entered in the Australian Football League’s (AFL’s) official
fantasy competition, Dream Team, in 2007. The aim of these competitions is to select a squad of 30 players
subject to salary cap and positional restraints, of which 22 are selected to “play” each week. The goal is to
field a team that will perform the best based on a pre-defined player rating system. ldeally, player ratings
systems should be completely objective and be fair for all positions across the field, but one criticism of
current player rating systems for AFL is their bias in favour of midfield and half-back players who dominate
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possession. AFL Dream Team uses a simplistic player rating system that considers only the most basic of
statistics, such as the number of kicks, marks, handballs and goals. While this system is easily interpreted, it
fails to take into account the quality of a player’s possessions and disposals, relying purely on the number of
such events.

The AFL’s second largest online fantasy competition, the Herald Sun’s Supercoach (with over 135,000
entries in 2007), uses a more complex method of player ratings, developed by the official statisticians for the
AFL, Champion Data. Whilst this system still relies on volume of possessions/disposals to evaluate ratings,
it also takes into account the quality of disposal, a more accurate assessment of the type of possession and
the current state of the game. For example, the Dream Team rating system allocates 4 points for a kick,
whereas the Champion Data ratings classify the same event as either an effective kick (4 points), ineffective
kick (0 points) or a clanger (uncontested turnover) kick (-8 points). Similar breakdowns of point allocation
occur for handballs, marks and possessions from disputed balls.

While the Champion Data ratings are a significant improvement over the simplistic Dream Team system,
the subjective and discrete classification of disposals and possessions is not ideal. For example, the definition
of an effective kick is either a short kick (less than 40m) to an unopposed teammate or a long kick (greater
than 40m) to an evenly matched (or 50/50) contest or better. So, a kick to a 50/50 contest 39 metres away is
considered an ineffective kick, but a kick that travels 41 metres to the same contest is considered effective.

In order to remove this subjective classification of events, this paper will make the first progress towards
a new player rating system will be introduced using Field Equity measures. O’Shaughnessy (2006) first
introduced the concept of Field Equity to Australian Rules football, a method of evaluating the scoreboard
value of individual possessions. A similar concept was used by Romer (2002) to decide in which situations
an American football team should “go for it” on the 4™ down.

AVAILABLE DATA

The locations on the ground of all possessions and stoppages in the AFL competition have been recorded
by Champion Data since 2004, resulting in over 500,000 data points up to the end of the 2007 season. Since
the dimensions of AFL grounds vary, the physical location of all possessions were mapped to standard
dimensions, those of the MCG, using a method that preserves ground markings and angles from goal. These
locations are time-coded and linked to information about the type of the possession that occurred, so further
investigation of specific situations within a game is possible. Noting that each quarter is started by a Centre
Bounce and that no further possessions/stoppages can occur after the siren at the end of each quarter, the 14
different types of possession/stoppage that can occur within a game can be classified within the following
seven phases:

e Set — Set possession, with no physical pressure.
o Contested/Uncontested Mark, Free Kick
¢ Uncontested — Minimal physical pressure from opponents.
o Gather, Handball Receive, Kick-In to Self
* Loose — Significant physical pressure from opponents.
o Loose Ball Get
e Hard - Direct physical pressure from opponents.
o Hard Ball Get, Ground Kick
¢ Stoppage — Umpire possession to restart the ball into general play.
o Ball-Up Bounce, Out of Bounds, Centre Bounce
o Kick-In — Restarts play from the defensive goal square, following a behind.

¢ Boundary Restart — Restarts play following an opposition “out on the full” at the location of the
infringement.
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Each of the above phases of possession will be analysed separately in order to establish Field Equity
values continuously across the ground.

FIELD EQUITY

O’Shaughnessy (2006) defines Match Equity, Ex(m.t.X,0), as the probability that a team will win from
the current match situation, dependent on the current score margin (m), the time left in the match (t), the
location of the ball (x) and the current phase of possession(¢p). It is then suggested that the match Equity can
be decoupled to give two measures, Field Equity E¢(x,¢), and a pressure factor [1{m.t). The Field Equity is
the expected value of the next score, based on the current location of the ball and the current phase of
possession. The pressure factor is a weighting that is applied to the Field Equity, essentially the effect that
next score will have on the outcome of the game. Since this paper is a first attempt at developing an Equity-
based rating system, for simplicity it is assumed that Field Equity is independent of the current margin and
the time left in the game. We now define:

X; as the observed location of the i possession
X; € an ellipse 160m x 138m (the dimensions of the MCG, used as the standard field size);

S; as the next score that occurs after the i™ possession (with possessions at the end of each quarter where
no further scoring occurs being removed)

S, e {-6,-1, 1, 6}; and
¢; as the phase of possession J
¢; € {Set, Uncontested, Loose, Hard, Stoppage, Kick-In, Boundary Restart}.

We can then estimate the Field Equity for a particular phase of possession ¢, at location x, as the average
of all observed “next score” events that occur within 6m of x.

E, (x, ¢)= ZSj X le, o6 X 1oy

where / is the indicator function. Note that data points where no further score occurred in a game were
removed from the analysis, so the next score cannot take on a value of zero. Of the seven different phases of
play, only the first four need to have Field Equity values calculated in this manner. This paper is primarily an
mvestigation of the effect of possessions and disposals on player ratings, so in order to keep the rating
system as simple as possible, we will make the assumption that neither team has an advantage at stoppages,
regardless of field position, meaning stoppages will be assigned zero Equity. O’Shaughnessy (2006)
proposed that the negative Equity associated with goal square Kick-Ins was due to the observed inequality
between two competing teams, and not due to the location/phase of the Kick-In itself. For the purposes of
this paper, however, the expected value of the next score will be used for the Equity of Kick-Ins. From the
observed data, it was found that the average next score from Kick-Ins was —0.12, meaning that the team
taking the Kick-In was at a disadvantage, so kicking a behind gives your team an average scoreboard
advantage of 1.12 points.

Table 1 below contains summaries of the Field Equity values calculated for the seven different phases of
possession for all matches in the 2004-2007 seasons. Note that in all areas of the field shown, set possession
is worth more than uncontested possession, which in turn is more valuable than loose and hard possession.
This 1s as expected because players with set possession have more time with the football to make an optimal
deciston. Players gaining hard possession have very limited time and often have to take the first option that
presents itself. This difference becomes more obvious as the ball gets closer to goal. In the defensive 50m
zone (Def.50), set possession is worth on average 0.19 and 0.67 points higher than uncontested and hard
possession, respectively. In the forward 50m zone (Att.50), set possession is worth on average 1.00 and 1.76
points higher than uncontested and hard possession, respectively.
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Table 1: Summary of Field Equities for possession phases, with overall range and average values across the whole
ground, in the defensive and attacking 50m zones and n the midfield

Play Possession Count for | Range in Field Mean Field Equity Values by Region
Phase Possessions | Equity Values All Def. 50 | Midfield | Att. 50
Set 159148 (<092, 5.78) 1.53 0.18 1.29 3.73
| Uncontested 177004 (-0.75, 5.70) 1.23 -0.01 .16 273
| Loose 64302 (-0.89. 5.42) 1.09 -0.11 1.01 2.59
Hard 54731 (-1.59. 4.48) 0.69 -0.49 0.66 1.97
Stoppage 54573 N/A 0 0 0 0
Kick-In 16624 N/A -0.12 N/A N/A N/A
Boundarv Restart 3368 (-0.12. 0.40) 0.12 -0.07 0.08 0.34

Fig 1: Equity values - Set Possessions. Fig 2: Equity values - Loose Possessions.

Fig 3: Equity values - Uncontested Possessions. Fig 4: Equuty values - Hard Possession
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The spatial patterns of average Field Equity values for all four general play possession phases (set,
uncontested, loose and hard) can be seen in Figures 1-4 above. All graphs are shown with the team in
possession running left to right. That is, the left side of the graph is the defensive zone and the right side is
the attacking zone. Note the steep gradient of Field Equity in the forward 50m zone, as compared to the
defensive 50m zone, especially for the set and uncontested possession phases. This steep gradient i1s due to
the scoring range of most players in the competition being 40-60m from goal. It was decided at the
commencement of this paper that previous assumptions of equality between the left and right sides of the
ground would be tested. No significant differences appear to be present, so future analysis will be made
using spatial data that has been folded along the centre of the ground, leading to roughly twice as many
observations for each location on the ground.

EQUITY RANKINGS FOR PLAYERS

In order to develop a player rating system that is unbiased with respect to player position, it was decided
that information about a player’s disposal and possession needed to be taken into account. As seen in Figures
1-4, there is a much higher rate of change for Equity in the forward half, and more specifically in the forward
50m zone, than in the defensive half and defensive S0m zone. If only disposals are taken into account,
forwards and midfielders would benefit greatly from this increased gradient, to the detriment of defenders. In
order to balance this bias, in addition to the result of a player’s disposal, the player’s possession also needs to
be taken into account to calculate their rating. In doing this, we reward defenders for turning over the ball in
a position where their opposition had a high Field Equity.

In view of the above discussion we can now define the Equity Value (V;) of possession / as the
difference between the Field Equity resulting from a player’s disposal and the Field Equity of the previous
possession. i.¢.

Vi=Ep(X, 0 0.0) — £ (X ,0.).
Several methods of evaluating player performance within a game based on these Equity Values are
possible, depending on the aim of the ratings system. Three possible systems are:
e Equity per minute, Z(V;)/(Time on Ground)
e Equity per possession, X(V,)/(Number of Possessions)
e Total Equity per game, X(V;)

These would be used to evaluate a player’s efficiency, disposal/possession quality and total scoreboard
value, respectively. Since pre-existing rating systems are based on the performance throughout a single
game, Equity per game was used in Table 2. In a concurrent paper, Meyer, et al. (2008) used Equity per
minute as a measure of a player’s quality and investigated possible influencing factors.

Table 2 below is a summary of the results by playing position of the Equity ratings for games in 2007,
sorted by median Equity per game. The correlations presented are between the individual game ratings for
the Equity ratings and for Champion Data’s (CD’s) player rating system. All measures indicate that forward
line players are benefiting more from this equity system than defensive players. Reasons behind this and
suggested corrections are presented in the Discussion section, below.
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Table 2: Total Equity per Game Statistics for Individual Players

Total Equity per Game for Individual Players Correlation
Player No. . ’
. o with CD’s
Position Games Approx. 95% . . .
Mean | St. Dev Median | Maximum Ratings
CI For Mean
Key Forward 676 12.13 8.87 (11.45,12.81) 11.16 54.94 0910
Gen. Forward 836 11.28 7.80 (10.74,11.82) 10.25 50.19 0.804
Midfielder 2945 10.20 7.07 (9.93,10.46) 9.56 43.82 0.850
Gen. Utility 293 9.27 6.82 (8.47,10.06) 8.43 33.82 0.877
Gen. Defender 1214 8.89 6.06 (8.54,9.24) 8.36 31.76 ©0.773
Tall Utility 366 8.94 6.77 (8.23,9.65) 8.15 32.29 0.868
Key Defender 795 8.20 5.38 (7.82,8.58) 7.83 32.60 0.771
Ruckman 619 6.64 5.36 (6.21,7.07) 591 30.16 0.834
All Positions 7744 9.69 7.02 (9.53,9.85) 8.84 54.94 0.805
DISCUSSION

One of the main aims of this paper was to produce a rating system that was unbiased with respect to
player position. However, due to the steep Equity gradient in the forward S0m zone and the relatively flat
gradient in the defensive 50m zone, as seen in Figures 1-4, players who spend the majority of their time in
the forward half are likely to get higher Equity ratings. Table 2 above contains evidence of this, with
forwards having a higher Equity rating than midfielders, who in turn rated higher than defenders and
ruckmen. General utilities are players who are able to play in the midfield and either forward or back and tall
utilities are players who generally play as either forwards or defenders, resulting in both classes of utilities
having close to average ratings.

By examining the typical possession patterns of the specific positions, the source of this inequality can
be seen more easily. For example, a player that kicks a goal gets a positive increase to their Equity rating of
4.31 points on average, but a missed shot on goal that results in a behind only decreases the player’s Equity
value by (.34 points. It is worth noting that the season’s maximum Equity per game, Jonathan Brown's 54.94
points in round 16, was the result of kicking 10 goals, 1 behind. In Round 21, Lance Franklin kicked 2 goals,
11 behinds and still managed an above average Equity rating of 16.04 points.

In order to even out the inequalities between forwards and defenders, more thought and planning will
need to go into the definition of the Equity value. The current system only takes into account where the ball
came from and where it went, not where the actual possession was taken. Using information about the
location of the possession could help to even out the ratings. Currently, a missed goal from the goal square
has the same negative effect to players’ rating as a missed goal from outside the S0m arc, as long as the
previous possessions had come from the same location and phase. Further penalising missed goals will
reduce the positive bias towards players in the forward line. Key and general defenders should also benefit
from using the location of the possession. One possibility is to take into account what might have happened
if the player did not get that possession. For example, taking a mark in the defensive goal square could be
further rewarded since a failure to do so may have resulted in an opposition mark and a near certain
opposition goal.
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Since no information was used about their presence at stoppages, ruckmen did not fare well with this
ratings system. Their primary role in the game is to win the ball out of a stoppage, playing as either an extra
man in defence or attack during general play. If however, stoppage information could be incorporated, this
would result in an increase to ruckmen’s ratings. Using the raw “next score” data, a first possession from a
centre bounce is worth 0.66 points and a first possession from a ball up in the forward 50 is worth 1.86
points. Champion data have a pre-existing statistic called “Hit-out to advantage”, which occurs when the
ruckman knocks the ball from the stoppage to an unopposed teammate. By combining this information with
the location of stoppages and the ensuing possessions, ratings for ruckmen should get closer to the average.
In 2007, teams averaged over 7 hit-outs to advantage from centre bounces, so with two ruckmen per team,
this should result in an increase of 2.3 points per player from centre bounces alone.

As the Equity rating system gets developed further, more information from the game statistics that are
already being recorded by Champion Data could be incorporated. Spoils, smothers, tackles and 50m
penalties, among others could all be used to influence a player’s rating. Even though these statistics aren’t
strictly possessions, they have the ability to change the phase of possession and/or the location of the next
possession, which both heavily affect the equity.

CONCLUSION

In this paper, it was shown that Field Equity values, as defined by O’Shaughnessy (2006) are
approximately the same for the left and right sides of a football field. This is an important result because it
means that further analysis can be conducted with data folded across the centre of the ground, essentially
doubling the amount of available data. It was also shown that a rating system for players in Australian Rules
football could be developed through the use of Field Equity. It is hoped that a different method of combining
Field equities to produce ratings will remove the current bias in the favour of forward line players. Early
analysis shows promising results for within position comparisons with current rating systems. Further
development of the rating system would provide a more accurate representation of the effect of a
possession/disposal. This could be achieved with the addition of a weighting based on the state of the game —
the “pressure factor”. Since Champion Data’s existing player rating system incorporates this, integration
between the two ratings systems should also achieve this goal. Other measures that were not considered in
this paper, such as the Equity per minute and the Equity per possession, may prove to be better estimates of

player quality.
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Abstract. Competition points are awarded in sports events to determine which participants qualify for
the playoffs or to identify the champion. In Super Rugby, bonus points are awarded for scoring four or
more tries and/or losing by seven points or less. As a result, there are 17 possible pairwise allocations of
competitions points per match. We use competition points to measure strength in a prediction model and
choose competition points to maximise prediction accuracy. This allows us to determine the alloca‘ion of
competition points that most appropriately rewards strong teams. Qur prediction model relates the
winning margin of the home team to home advantage and travel variables, and indices of competition
points eamed by the home and away teams using non-linear least squares. The model determines both
optimal values (relative to the number of points awarded for a win) and optimal thresholds (in terms of
the number of tries or minimum losing margin required to earn a bonus point) for bonus points. We find
that the current allocation of competition points is not optimal. Specifically. we argue that the try bonus
point should be scrapped and a narrow loss bonus awarded if a team losses by five or fewer points. Our
findings also have implications for other competitions.

Keywords: Non-linear least squares; Sports predictions

INTRODUCTION

Administrators of sports competitions involving round-robin or group stages typically award competition
points in order to rank participants. These rankings are used to determine which competitors advance to the
playoffs or to identify the overall winner. It is, therefore, important that organisers employ allocation criteria
that accurately reflect the strength of participants. Bonus points are awarded in a number of sports, including
rugby, ice hockey and cricket. We concentrate on Super Rugby as the allocation of points in this competition
is more complicated than most others and our modelling framework is well suited to this event.

The inclusion of bonus points often produces a different hierarchy of teams relative to that obtained if
bonus points were not included. Despite the mfluence bonus points can have on the ordering of teams and
ultimately the selection of semi-finalists, the appropriateness of the allocation of Super Rugby competition
points has not been evaluated. Furthermore, most other rugby competitions have adopted a similar system for
allocating competition points, including the Rugby World Cup — reputably the world’s third largest sporting
event.

We determine the allocation of Super Rugby points that is best at revealing strong teams by using
competition points to construct strength measures and choosing competition points to maximise prediction
accuracy. Intuitively, maximising prediction accuracy allows us to determine the optimal allocation of
competition points, as predictions using strength indices built on an allocation that is not good at revealing
strong teams will be less accurate than predictions based on an allocation that is good at identifying strong
teams.

This paper has three further sections. Section 2 outlines the salient features of Super Rugby. Our
modelling framework and results are set out in Section 3. Section 4 concludes.
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SUPER RUGBY

Super Rugby is played under rules set out by the International Rugby Board. Teams earn points during a
game by scoring tries (placing the ball over their opponent’s goal line) and kicking goals. A try is worth five
points and grants an opportunity to kick a conversion, which, if successful, is worth an additional two points
(so seven points can be scored in a single scoring play). Teams can also attempt to kick a goal when they are
awarded a penalty or attempt a drop goal in general play. A goal is worth three points.

The Super Rugby competition has been played annually since 1996 by provincial/state sides from
Australia, New Zealand and South Africa. Between 1996 and 2005, there were 12 Super Rugby teams (five
from New Zealand. four from South Africa and three from Australia) and the competition was known as the
Super 12. Two extra teams, one each from Australia and South Africa, were added in 2006 and the
tournament was renamed the Super 14. The name *Super Rugby” encompasses both competitions.

Each tournament begins with a round-robin phase where each team plays every other team once. Each
team has one bye, so from 1996-2005 each team played 11 games over 12 rounds. The top four teams from
this stage qualify for the semi-finals and the two winning semi-finalists contest the final. Hosting rights for
the semi-finals and the final are awarded to the team in each contest that gained the highest round-robin
ranking. Competition points are awarded at the completion of each match according to several decision rules.
A winning team is awarded four points, a losing team zero points and each team earns two points if a match
is tied. In addition, bonus points may be awarded for (i) scoring four or more tries, and/or (ii) losing by seven
or fewer points. So, a winning team may earn five or four competition points, a team that ties a match may
be awarded three or two points, and a losing team may earn two, one or zero points. In total, there are 16
possible pairwise allocations ef points per match (5-2, 5-1, 5-0, 4-2, 4-1, 4-0, 3-3, 3-2, 2-2, 2-3, 0-4, 1-4, 24,
0-5, 1-5, 2-5).

Geographically, Super Rugby franchises are diverse. The time difference between New Zealand and
South Africa is 10 hours, travelling between New Zealand and South African cities can take up to 30 hours,
and teams based on South Africa’s Highveld are around 2000 meters above sea level while most other teams
have coastal headquarters. We distinguish four regions — Australia, New Zealand, South Africa-coastal and
South Africa-Highveld - to capture geographic diversity.

Evidence of strong home advantage is that between 1998 and 2005 home teams won 61.3% of matches,
away teams won 36.6%, and 2.1% of matches were tied. Further evidence of home advantage is that, on
average, home teams score 6.4 more points and nearly one more try per match than away teams.

There are also large variations in average home winning margins across teams, not all of which are due
to differences in team ability. Average home winning margins for the Brumbies, Crusaders and Highlanders
are 17.0, 14.8 and 11.6 respectively, while cotresponding figures for the Bulls and Cats are -1.5 and 0.4
respectively. The data also suggest that home advantage is also likely to depend on the distance travelled by
the away team.

MODELLING FRAMEWORK AND RESULTS

The details of many sports ranking/prediction systems are not available to the public because of their
application to sports gambling and/or for proprietary reasons. Prediction models in the public domain include
Stefani (1980), Zuber et al. (1985), Clarke and Stefani (1992), Clarke (1993), Glickman and Stern (1998),
and Bailey and Clarke (2004). To our knowledge, no existing system evaluates the appropriateness of the
allocation of competition points.

We use the home team’s net score (points scored by the home team minus points scored by the away
team) to characterise the outcome of a match and predict match outcomes by regressing net scores on
location and net strength variables. Let 7 denote the home team, j denote the away team, » and s index
regions (Australia, New Zealand, South Africa-coastal and South Africa-Highveld),  index rounds and y
index years. We specify the following regression equation
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NSTRN is the net strength of team i J captures the influence of NSTRN on NSC, and ¢ is an error term.

match, zero otherwise {Dy; =( )}; @y is a IX16 vector capturing additional home

from region » hosted a team from region s, zero otherwise { D, =(

In our estimations described below, we drop one team-specific home advantage parameter (afBl"‘S ) and

the four regional home advantage parameters for which # = s to avoid introducing perfect multicolinearity.
NSTRN is defined as

NSTRN. . =STRN, . —SIRN. (2)

gy iry ARG

where STRN measures team strength and is a time-varying weighted average of competition points earned
per-game in years v and v-1. In the first match of each year, the weight on competition points earned in the
current season is zero and this weight increases by a constant amount after each game. Specifically, STRN is
calculated as

SIRN,,, = 4. ,POINTS, 15, +(1-

LFy (NN

YPOINTS (3a)

l’\ i,r—1,3

where POINTS;,, denotes competition points earned per-match by team i in year y at the completion of
round r, and 4, is equal to (11 — g;,,, )/11 where g denotes the number of games played by team 7 prior to
round r in year y. (Even though there is an even number of teams in the competition, there is not a direct
correspondence between the number of games played by a team and the round number as each team has one
bye each year.)

Noting that competition points are awarded for winning, ticing and losing by seven points or less
yields the following expression

STRN; ., = 2., ("™ WIN 13 . +O"ETIE, 15, | (3b)

+ 0B LOSS, 5, )+ (=24, YOTVWIN,,

+O"ETIE, 0 IRY, |+ 0TOPLOSS,, )

where 0", 0™ 0™ and 0" are competition points awarded for, respectively, winning, tieing, scoring four
tries or more, and losing by seven points or less: and WIN,,,, TIE;,,, TRY,,. and LOSS,,, are the average
number of matches team i has, respectively, won, tied, scored four or more tries in, and lost by seven points
or less in year v at the completion of round ». We replace r with 12 when referring to the average number of
wins etc in the previous year as there are 12 rounds in each season. Substituting (2) and (3b) into (1) gives
the equation to be estimated.
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As the optimal allocation of competition points is invariant to multiplication by any positive scalar, we
normalise points with respect to "™, That is, we set 6”7 equal to one and express values for other events
attracting competition points relative to the number of competition points awarded for a win.

Our strength measure is well suited to Super Rugby on three grounds. First, there is no relegation or
promotion so the same teams play each other each year. Second, probably because rugby has only been
professional for just over a decade, most players are local to the province/state they represent and there is not
a well-developed transfer market. Indeed, most movements between franchises are by players on the fringe
of selection for their “home’ team seeking an opportunity at another franchise.

Third, as each competition begins with a round-robin, each team plays a balanced schedule each year and
there is a higher probability that a team has played a schedule of average difficulty as the season progresses.
Combined, the three characteristics indicate that it is appropriate to measure a team'’s strength at the start of
each year as average competition points earned in the previous year and increase the weight on current year
competition points as the season progresses.

We estimate (1) using 528 round-robin Super Rugby matches played during the years for which there
were no changes in Super Rugby teams, 1998-2005. We fix all competition points at (normalised) values
currently used in Super Rugby (6" = 1, 8™ = 0.5, and 6™'= ¢*°* = 0.25) in our first regression exercise. In
this case all components of NSTRN are exogenous. We eliminate insignificant home advantage parameters
using a general-to-specific methodology with a single search path. Specifically, we start by including all
home advantage parameters (except those omitted to avoid introducing perfect multicolinearity) and
eliminate the parameter with the lowest /-statistic in each subsequent estimation until the highest p-value is
less than 0.05. We also search for structural breaks in home advantage parameters by allowing values for
these parameters to differ pre and post 2002.

We find that all regional home advantage parameters are not significantly different from zero expect

those for Australian teams hosting teams from the Highveld (a§4"s"”li“‘5‘4_ﬂigh"e[d) and New Zealand teams

NZ S4-Highveld

hosting sides from the same region (a, ). The results also indicate that additional home

advantage parameters are only significant throughout the sample period for the Brumbies ( ") and

Crusaders ( ™%’ ). The additional home advantage parameter for the Highlanders (afﬁgh landers y \was also

significant but only until the end of 2002. All other home advantage parameters are not significantly different
from zero. (The Wald test for the joint significance of omitted home advantage parameters has a p-value of
0.924)

Results from estimating (1) using ordinary least squares (OLS) and only including significant home
advantage coefficients are reported in column (a) of Table 1. The estimates reveal that most teams
experience an advantage from playing at home equal to 3.42 game points. Home advantage for the Brumbies
and the Crusaders, however, against most teams is equal to 12.14 (3.42 + 8.99) and 10.97 (3.42 + 7.55)
respectively. Prior to 2003 the Highlanders enjoyed the largest home advantage of all Super Rugby teams
(13.34). Tuming to the regional home advantage variables, when an Australian team (except the Brumbies)
hosts a team from the Highveld home advantage equates to 19.34 (3.42 + 15.92). Meanwhile, New Zealand
teams (except the Crusaders and the Highlanders prior to 2003) entertaining Highveld sides benefit by 11.64
(3.42 + 8.22) points. The impact of location is largest when the Brumbies host a Highveld team and assists
the Brumbies by 28.33 (3.42 + 8.99 + 15.92) points. Interestingly, the Brumbies win-loss record against
Highveld teams in our sample period is 8-0. Given the geographic dispersion of Super Rugby regions, the
large impact of location on match outcome is not surprising. As the influence of home advantage is
consistent across specifications, we do not discuss these parameters for other estimations.
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Table 1: Regression results

(a) (b) (c) (d) (e)
Estimation OLS NLS NLS OLS NLS
Try partition 4 4 8 8 -
Narrow-loss partition 7 7 5 5 5
Constrained Yes No No Yes No
ay 3.42™ 331 347 3.4277 3347
(0.84) (0.85) (0.85) (0.83) (0.85)
afrimbies 8.99™" 9.49™" 832" 9.09™" 9.24™"
(2.64) (2.65) (2.66) (2.61) (2.62)
o Lrusaders 7.55" 776" 7337 7417 752"
(2.76) (2.81) (2.85) (2.78) (2.81)
o [Tightandesth 992 10377 9.10™ 9.63™ 10217
(2.74) (2.84) (2.85) (2.76) (2.83)
gjlustraligSA-Higheld 15 3™ 590" 16.58™ 1588”7 1590
(3.59) - (3.60) (3.62) (3.60) (3.60)
i SA-Highveld 8.22™ 831" 8.87"" 827" 847"
(2.46) (2.48) (2.49) (2.45) (2.48)
Jij 13.497" 16.26™" 13127 15.23™ 1578
(2.56) (3.32) (3.10) (2.65) (2.79)
oTE 0.50 0.88 126 0.67 0.88
- 0.77) (0.99) - (0.78)
gTRY 0.25 -0.02 1.64 0.33 -
- (0.26) (1.06) - -
gross 0.25 0.57" 0.89" 0.33 0.71"
] (0.30) (0.45) - (0.36)
R? 0.20 0.21 0.22 0.21 021
Correct predictions 347 352 356 349 343

Note: ¥¥% *¥* and * denote significance at the 1%, 5% and 10% significance level respectively. Robust standard errors are reported
m parentheses. (1) only significant between 1998 and 2002.

The positive and significant coefficient on NSTRN indicates that our strength measure is a significant
determinant of match outcomes. The value for § implies that, in the absence of home advantage, a team that
wins every match and a collects a try bonus will beat a team that loses every match without earning any
bonus points by 16.86 (1.25"13.49) points. Relative to the impact of where the match is played, the strength
of the two opponents appears to have a moderate impact on match results. Overall, the model is able to
explain about 20% of the variation in the sum of squared net scores and correctly selects the winning team in
around two-thirds of matches.

Results from estimating (1) using nonlinear least squares (NLS) are presented in column (b). The
estimate for £ indicates that the net average number of wins by the home team is a significant determinant of
net scores. Estimates for 8™ and 8™ are not significantly different from zero, so the average number of ties
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and the average number of times four or more tries are scored are not significantly correlated with team
strength. The estimate for ¢ is only different from zero at a 10% significance level, indicating that the
average number of losses by seven or fewer points is a weak determinant of team strength.

The average number of ties may be an insignificant determinant of strength as there has not been enough
tied matches to accurately gauge the impact of this event on team strength (only 2.1% of matches were tied).
The appropriateness of the try bonus can be questioned on the grounds that it is not uncommon for teams that
lose by a large margin to earn a try bonus. For example, in round nine of the 1998 competition the Stormers
carned a try bonus even though they lost 24-74 to the Blues. This could be because whether or not a losing
team earns such a bonus is largely determined by the attitude of the winning team. For instance, a dominant
team may decide to bring on bench players and/or play with less aggression/enthusiasm. Support for this
hypothesis is that the average losing margin when defeated teams are awarded a try bonus (13.0) is similar to
the average losing margin when beaten sides do not earn a try bonus (14.7). We also regress the losing
margin on a binary variable equal to one if the losing team scored four or more tries (and zero otherwise).
The p-value on the coefficient for the binary variable is 0.420.

Regarding the narrow-loss bonus, perhaps a seven-point margin is not indicative of a close game. After
all, such a margin implies that the losing team could earn a narrow-loss bonus if an additional maximum
scoring play (a converted try) by this team would have tied the game. Between 1992 and 1995 in New
Zealand’s National Provincial Championship, teams could only earn a narrow-loss bonus if an additional
maximum score by the losing team would have reversed the outcome of the match. So. history suggests that
administrators are unsure how to define a narrow loss.

We examine the appropriateness of cut-offs or partitions used for bonus points by estimating (1) for a
range of alternative combinations of partitions for try and narrow-loss bonuses. The sum of squared errors is
minimised when a try bonus is awarded for scoring eight or more tries and a narrow-loss bonus granted for
losing by five or fewer points. The cut-off for the try bonus makes it very unlikely that a losing team will
earn such a bonus. The cut-off for the narrow-loss bonus indicates that a defeated tcam should be awarded
such a bonus if at most two additional penalty goals or a converted try by this team are required to reverse
the outcome of the match.

Column (c) in Table | reports results when these partitions are used. There is a slight improvement in the
R® and the number of correct predictions. The point estimate for 6™ suggests that a tie should attract more
points than a win, but this estimate is not significantly different from zero. The estimate relating to the try
bonus indicates that scoring eight or more tries should attract 1.64 points. Although, unlike the estimate for
6™ the estimate for the try bonus relative to number of points awarded for a win is not illogical, such an
allocation may be unpalatable to rugby administrators and supporters. In any case, the estimate for 8% is not
significantly different from zero, although the p-value for this estimate (0.120) is much smaller than the
corresponding p-value (0.952) in (b).

Turning to the narrow-loss bonus, the results suggest that losing by five or less points should attract
almost 90% of the points awarded for a win. Like in (b), #°” is only different from zero at a 10%
significance level but the p-value for this estimate improves from 0.059 in (b) to 0.051. The p-value for joint
significance of #” and 6™ is 0.098.

Overall, point estimates for competition points awarded for a tie and the two bonuses are higher than
interested parties would find agrecable. Consequently, we impose the following constraints when estimating

(nH

ol < %(gm;\f + 01055 (4.1)
oY < lHHE 4.2)
61055 < % QTIE 4.3)
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The first constraint places an upper limit on the amount of points awarded for a tie. We allow a tie to
attract more than half the number of points awarded for a win on the grounds that the most likely alternative
outcome to a tie is a narrow loss for one team, and our specification allows teams that tie to share the
competition points awarded for a win and a narrow loss. Constraints (4.2) and (4.3) stipulate that bonuses
should be less than or equal to half the number of points awarded for a tie, as in the allocation currently used
in Super Rugby.

Results from estimating (1) with the appropriate constraints imposed and determining optimal thresholds
for bonus points are reported in column (d) of Table 1. As expected, a lower R* and fewer correct predictions
are associated with the constrained model than the unconstrained model, but the model does better on both of
these criterion than (a). The p-value for the joint Wald test of the appropriateness of the constraints (0.525)
indicates that the data cannot reject the restrictions. Overall, the results suggest that an allocation that awards
three points for a win, two points for a tie, one point for scoring eight or more tries, and one point for losing
by five or fewer points is marginally better at identifying strong teams than the current allocation.

Our results suggest that, after controlling for the number of wins and narrow losses in previous matches,
the number of try bonuses earned by a team does not increase that team’s predicted net score. In other words,
offering a try bonus encourages teams to play a style of rugby that does not increase the probability of
winning. Anecdotal evidence also supports our assertion that the try bonus is not correlated with team
strength. In the quarterfinals of the 2007 Rugby World Cup, New Zealand and Australia, two teams heavily
favoured to advance to the next round, lost to France and England respectively. Several rugby experts,
including Australian coach John Connolly, suggested that the attacking style adopted by the two favourites
was partly responsible for the unexpected results. In turn, the incentive structures in place in the competitions
that these teams regularly participate in may influence playing styles. Specifically, New Zealand and
Australia compete in the Tri-Nations competition where a try bonus point is offered, and France and England
participate in the Six Nation tournament, where a try bonus is not offered.

We report results from estimating (1) when the try bonus is dropped in column (e) of Table 1. The larger
estimate for £ reveals that the average number of wins has a greater influence on net score than in all other
specifications except (c). Additionally, unlike in other specifications, the point estimate for 8™ is not
irrational and the p-value for the significance of 8"“ is less than 0.05. We drop the try bonus and impose
constraints (4.1) and (4.3) in an unreported specification. The data cannot reject the constraints (the p-value
for the joint test of the constraints is 0.584). Interestingly, the data can also not reject the joint test ' = 0.5
and #"%% = 0.25 (the p-value for this test is 0.437). This suggests that dropping the try bonuses and changing
the losing margin required to earn a narrow loss bonus to five points will improve strength accuracy while
requiring minimum changes to the current allocation.

CONCLUSIONS

We determined the allocation of competition points that most appropriately rewards strong teams. We
focused on Super Rugby as the allocation of points in this competition is relatively complicated and several
features of this tournament fit our modelling strategy.

We found that the bonus awarded for scoring four or more tries is not significantly correlated with team
strength and that the bonus for losing by seven or fewer points is only a weak determinant of strength. If
competition points are allocated solely to reward strong teams, a try bonus should not be awarded but a
bonus should be awarded for losing by five points or less. In addition to distorting league tables, it could be
argued that the try bonus encourages teams to play in manner that does not increase the probability of
winning. The finding that the (modified) narrow-loss bonus is a significant determinant of team strength
suggests that it may be beneficial for other sports competitions to adopt such a bonus, although the different
nature of alternative sports may give quite different results.

Before closing we note that an alternative allocation of competition points may encourage teams to
behave differently to that observed in our sample. Although, given the competitive nature of most
professional athletes, it seems reasonable to assume that teams wish to win and prefer a narrow loss to a
large loss, there are several cases where shifting the ‘goal posts’ may alter teams’ actions. First, a team
awarded a kickable penalty near the end of a match and behind by seven points will be more likely to attempt
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to score a try rather than opting for a shot at goal if a bonus is awarded for losing by seven or fewer points
than if a loss by five or less is required. Second, a coach whose team has scored four tries and has a
comfortable lead will be less likely to substitute key players if eight or more tries are needed for a try bonus
than if only four tries are required.
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PERFORMANCE AND LEARNING OF MOTOR SKILLS: A
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MOVEMENT SYSTEMS
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KEYNOTE ADDRESS

Abstract. Given the challenges in increasing activity levels of the population, an important factor in
enhancing lifelong adherence to sport and physical activity are the early sporting experiences of children.
To this end, coaching practice needs to be based on a principled application of motor learning theory.
Current research using interceptive cricket actions as the task vehicle has demonstrated that movements
are tightly coupled to information. These findings provide support for the constraint-led model proposed
by Newell (1986) and highlight the need to develop learning approaches that adopt a more hand-otf
approach than traditional coaching.

Keywords: constraints-led; motor learning

INTRODUCTION

Around the world there is growing concern over levels of physical activity and their impact on
population health. To arrest this ‘epidemic’ there has been increased recognition of the role of physical
activity in exercise and sport. In Australia, the importance of physical activity appears to be highly valued
with many children participating in organised sport and being “athletic” is closely associated with personal
growth and development. However, in 1995 the proportion of overweight or obese children and adolescents
i Australia was 23% and 6% respectively (Booth et al., 2001). These figures demonstrate that the
prevalence of overweight children had almost doubled, and the prevalence of obese children more than
tripled over the previous decade (Waters & Baur, 2003). Given these alarming statistics and the likely knock
on effect on health as these children grow up, how then do we encourage children to be more active?
Although millions of dollars are being spent on well meaning exercise programmes, perhaps the key to
lifelong activity is to enable children to become skilful sports performers?

An important factor in enhancing participation in sport and physical activity are the early experiences of
children in sport. The importance of high quality experiences from the ‘first coach’ is well known in the
sport literature and it appears that these early experiences act to facilitate the motivation and interest needed
to continue participation in sports and physical activities throughout the lifespan (Martens, 2004). To this
end, interaction between movement scientists and pedagogists is important for the development of adequate
models of skill acquisition in the teaching and coaching of sport. However, the relationship between motor
learning and practitioners over the years has not been as effective as it could have been. One reason for this
may have been that the adoption by many researchers of non-representative laboratory experiments at the
expense of applied work has produced few practical, empirically verified recommendations for physical
education teachers and coaches (see Hoffman, 1990 ; Locke, 1990 ). To alleviate this problem, Newell and
Rovegno, (1990) proposed that the theory and practice of motor skill acquisition required an inter-
disciplinary perspective and the emergence of a new theory (the ecological approach to perception and
action) was seen as the catalyst for future applied research using natural multiple degrees of freedom tasks.
Indeed, the last few years has seen an increase in motor control research adopting this theoretical approach to
the extent that the ideas and pedagogical approaches of the constraints-led approach are creating
considerable interest and are being taken up by practitioners at all levels (Chow, Button, Renshaw,
Shuttleworth & Davids, 2008; Rink, 2008). In this paper, [ will briefly introduce the constraints-led approach
and then discuss some of my research that has used the interceptive actions of cricket to demonstrate how
motor control research can provide theoretical and applied advances to meet the needs of academia and the
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practitioner. I will finish by highlighting how adopting the ideas of a constraint-led approach can enhance
contemporary teaching and coaching practice to facilitate positive learning experiences for children and
adults.

CONSTRAINTS ON PERFORMANCE

The principles and ideas of ecological psychology and dynamical systems can be used to provide a
framework for teaching and coaching practice (Renshaw, Davids, Shuttleworth, & Chow, in press). The
constraints-led perspective sits within ecological psychology and contrasts with the cognitive models that
have traditionally driven practice design in sports settings. Constraints have been defined as boundaries
which shape the emergence of behaviour from a movement system (e.g., learner) seeking a stable state of
organization (Newell, 1986). Newell classified constraints into three distinct categories to provide a coherent
framework for understanding how movement patterns emerge during task performance. The three categories
of constraints are: performer, environment and task. Performer constraints refer to the unique structural and
functional characteristics of learners and include factors related to their physical, physiological, cognitive
and emotional make up. Environmental constraints refer to physical factors such as the surroundings of
learners including gravity, altitude and the information available in learning contexts, such as amount of light
or level of noise in a gymnasium or sports field. Other important physical environmental constraints include
the parks, backyards, empty spaces and alleyways that provide the backdrop for early sport experiences of
many active children. Finally, task constraints are perhaps the most important constraints for movement
educators because of their significance in learning. They include the goal of the specific task, rules of the
activity and the implements or equipment used during the learning experience.

Research from a constraints-led perspective

A key performer constraint in fast ball sports is perceptual discrimination ability which has been shown
to be a function of previous experience and exposure to appropriate sport specific information (Abernethy,
1987; Renshaw & Fairweather, 2000; Williams, Davids, & Williams, 1999). Thus, players need to have
extensive experience of the movement patterns of ‘opponents’ in order to be able to effectively perceive in
sport. These person-related factors (Heft, 2003) act to delimit affordance possibilities and as such play a
significant role in determining the style of play adopted by individuals. Given the importance of high levels
of perceptual skill for expert performance, interest has centred on the most effective ways to develop these
skills 1n sports such as cricket. In a recent study, (Renshaw, Fairweather, Oldham, & Rotheram, 2004)
examined the efficacy of implicit and explicit learning approaches by attempting to train club level cricket
batters to identify legspin and googly deliveries by ‘batting’ against national wristspin bowlers on a full-size
video-screen. Batters were split into groups where one group received no ‘coaching’ information about the
bowler and ball types, while a second group were given ‘important’” information about the position of the
wrist and hand at release. A third group acted as a control group; they watched videotape of test matches.
Results show that both implicit and explicit video-based training programmes improve the perceptual
discrimination capability of the batters in a coupled perception-action task that replicates batting in cricket.
Furthermore, over the long-term, trends suggest that implicit practice may be more robust. Indeed, this was
the case for performance against a new spin bowler of similar standard to the other bowlers at short-term
retention. A key message for coaches and players is that providing additional ‘coaching’ advice to players
provides no advantage in development of perceptual discrimination ability and that simple ‘exposure’ leads
to an improvement in performance. The process of differentiating legspinner from googly deliveries appears
to occur by batters attuning to the invariant information provided within the bowlers’ body actions.

Knowledge of the way that informational constraints affect movement means that the coach can
deliberately change the constraints to enable the player to attain new movement solutions. Since perception
is specific to environmental properties uniquely constraining each performance situation, changing the
ecological constraints of practice can deeply influence the movement behaviours that emerge (Beek, Jacobs,
Daffertshoffer, & Huys, 2003). An important role of practice is to educate learners to pick up constraining
perceptual variables rather than non-constraining (less relevant) variables in specific and relevant practice
contexts (Jacobs & Michaels, 2002). However, practice environments have traditionally been adapted to
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manage the information load on learners by decomposition of the movement model into micro-task
components. For example, in cricket, bowling machines allow accurate and stable projection of balls to
enable acquisition of batting skill in isolation from game contexts. The problem is that experienced
performers use pre-ball flight information to constrain coordination modes, as revealed by studies of cricket
batting (e.g., Renshaw and Fairweather, 2000). In a recent study, we required high intermediate level batters
to face a medium pace bowler and a bowling machine set to the same speed. Analysis of the kinematics of
the forward defensive shots played by the batters demonstrated that using bowling machines leads to
batsmen developing different timing and co-ordination patterns for balls delivered at the same speed
(Renshaw, Oldham, Golds, & Davids, 2007). These findings bring into question the efficacy of using ball
projection machines in training and suggest that the most effective way to improve both perception and
action is by batting against real bowlers.

Run-ups are not stereotyped

The task demands of sporting run-ups provide motor control researchers with ecologically valid
opportunities to develop theoretical understanding of movement control. Additionally, research can enhance
understanding for the practitioner. In cricket bowling, given that ‘no-balls’ are a major problem for many
bowlers, providing a better understanding of the run-up is of vital importance in order to help us understand
why they occur. Of particular interest is to see if the widely held notion (in cricket circles) that run-ups are
stereotyped is in fact correct. However, previous research in long jumping has shown that these run-ups are
controlled by visual regulation with jumpers making step adjustments at the end of their run-ups in order to
successfully hit the take-off board (Montagne, Cornus, Glize, Quaine, & Laurent, 2000). As cricket run-ups
have a different nested task constraint embedded at the end of the run-up (i.e. bowling rather than jumping),
theoretically, we wished to see if the task constraint of cricket bowling led to bowlers demonstrating similar
locomotor control strategies as long jumpers. On a practical level, a further aim was to provide useful applied
information that would increase coaches and bowlers understanding of bowlers’ run-ups in order to develop
a greater understanding of why no-balls are bowled. In order to explore these issues (Renshaw & Davids,
2004, 2006) examined the run-ups of 6 professional cricket bowlers. Analysis using both inter-trial and intra-
trial analyses revealed that bowlers did not produce stereotyped run-ups. In fact although bowlers
demonstrated inconsistent start points (they did not ‘hit’ their marker) they still managed to achieve very low
levels of vanability in their footfall position at the bound step (mean=0.11 m, range=0.08-0.16 m). In
general, most bowlers achieved this level of accuracy by making step adjustments early and late in their run-
up. On an individual level, bowlers demonstrated individualised run-up patterns, adjusting their steps ‘on-
line’ as and when they needed to do so, providing further support for the prospective view of locomotor
control. At an applied level, the results show that stereotyped ‘error’ free run-ups are not possible and that
run-up variability is not only to be expected but is a functional component of successful bowling
performance. In a related case-study (Renshaw, Rotheram, Kemshall, Wilkinson, & Davids, 2003) we found
differences in step patterns when the umpire and/or stumps were not present during the run-up. Once again,
these findings have important implications for the design of practice for sports skills and highlights the
importance of maintaining appropriate information sources to facilitate the development of appropriate
information-movement couplings.

New approaches to coaching

The research findings of the studies discussed in this paper allow us to make some points with regards to
coaching. The traditional approach in which perceptual and decision-making skills are only introduced after
‘basic’ technical skills have been ‘grooved’ is strongly rejected by the findings of these studies. Coaches
should strive for holistic development of players; however, this does not mean that approaches have to be
over complex. In fact, coaching should be based on task simplification as opposed to the traditional methods
that use task decomposition. To use task simplification it is important that the coach understands the key
control parameters for movement tasks within a task, as this means that he can manipulate the underlying
constraints to guide learners to discover their own solutions. Essentially, if a more hands-off approach to
coaching is adopted, performers are capable of exploring the task constraints and solving problems in unique
ways that are appropriate to their individual capabilities. Pedagogical approaches that fit in with this non-
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linear pedagogy (Chow et al., 2006) include guided discovery, discovery learning and differential learning
(see Schéllhorn et al., 2006). Additionally, the constraint-led model provides a suitable theoretical
framework for coaches to use the Teaching Games for Understanding (Bunker & Thorpe, 1982) approach in
their coaching. Adopting these approaches provides opportunities for performers to be autonomous, to
demonstrate competence and relate to others while solving problems. Not only will this lead to the
development of more intelligent games players, it is also likely to impact on the player’s intrinsic motivation
and hence their adherence to the practice and performance programme.

To conclude this section, Newell’s (1986) constraints model provides an excellent conceptualisation to
guide the design of practice because it adequately captures the rich range of diverse constraints acting on
learners during skills learning and games participation. It provides a framework which emphasises the
important interactions of personal, environmental and task constraints in a balanced perspective. Knowledge
and adoption of the ideas of this approach will provide teachers and coaches with an alternative viewpoint to
motor learning and lead to radical changes in the design of pedagogical practice.

Summary

In this paper | have demonstrated how adopting a constraints-led approach can enhance the quality of
coaching experiences for children and adults. The principles discussed predicate an approach to instruction
that facilitates learning using natural self organising processes under constraints. Coaches should adopt a
more hand-off approach to learning and minimise potential disruption to performance by unnatural explicit
instruction. The research findings discussed highlight the importance of promoting natural implicit leaming
by creating environments that enable performers to engage in exploratory behaviour to learn many
fundamental movement skills without recourse to verbal instruction. However, this is not to say that teachers
and coaches should merely allow ‘free play’ and hope that learners complete a set task/ game situation in
whatever way the learners deem appropriate! Coaching requires a sound understanding of the principles of
ecological psychology and dynamical systems theory as well as the principles of play for specific sporting
activities. With this knowledge, coaches can manipulate informational, task and environmental constraints to
provide developmentally appropriate practice activities that facilitate leamers to discover movement
solutions in dynamic settings.
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Abstract. Results that employ Rasch (1960) analysis are often reported in the form of an item-person
map, which show the relationship between two key variables: item difficulty estimates and person ability
estimates. The map displays results numerically in the form of logits. This paper presents the results of
an analysis, using the Quest (Adams & Khoo, 1993) statistical package. for individuals (N = 117) who
performed the fundamental skill of the basic forward roll, in gymnastics. Initially the Quest package was
employed to confirm the underlying construct, namely, the quality of the individual’s performance.
However, within the realm of the psychomotor mode of learning, the use of numbers, as they are
traditionally employed in reporting statistical results, may not achieve a ‘user friendly’ status for either
physical education teachers or sporting coaches. Because data were recorded using digital images, the
results could be reported through the linking of photographs to in the step difficulties previously only
presented in numerical format. These images depict what the different aspects of the roll actually ‘look
like’, whilst still maintaining the integrity of the item-person map. As such, the degree of difficulty were
visually linked to the quality of student performances for the forward roll. The individuals who took part
in this study represent an a sample who are at both ends of the limits of ability to perform a roll. Their
ages ranged from 4 years to 42 years, and comprised three cohorts, namely children, young adults and
older adults. This approach brings together previously unconnected elements of data, analysis and
interpretation of results.

Keywords: Rasch, images

INTRODUCTION

This article reports on a novel method of presenting statistical data, which demonstrates that sometimes a
series of pictures can convey, for some individuals, more information than a thousand numbers! Using
snapshot pictures, gleaned from a digitally recorded movie, information can be rendered in a “less
complicated” fashion that may enhance the accessibility of the data for a wider audience, more specifically
for those individuals who may be visual learners. For the presentation of the data in question, the meaning
and significance of the pictures are no less meticulous than if they were presented in numerical format.

The individuals who performed the gymnastics skill, termed, the basic forward roll, were filmed using
digital video. These data were then transferred to CD Rom, which enabled freeze frame and slow motion
analysis, as well as the extraction and transfer of individual frames into different electronic documents.
Filming was conducted from three perspectives, namely, the side (laterally), front (anterior) and behind
(posterior). For the purpose of analysis the froward roll was divided into three hypothesised sequences, the
beginning, bridging and end. Following close deductive analysis of the visual data, a number observational
cues were identified. These cues were found to be useful for assisting in the determination of the quality of a
movement performance. The term indicator, was applied to the cues, and refers to the position of selected
anatomical structures of the performer. In addition, more fine-grained subdivisions within each indicator
were identified; these were termed descriptors. The application of the descriptors to a performance was
finally employed to determine the quality of movement for the forward roll. This measure of movement
quality has not previously been catered for in forward roll assessment models, such as those proposed, for
example by Roberton and Halverson (2006) or Gallahue and Ozmun (2006). The descriptors were coded and
subjected to the Rasch (1960) statistical analysis partial credit method to verify the underlying construct, i.e.
the varying levels of quality performance of the forward roll (Haynes, Miller, Callingham, & Pegg, 2005).
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THE TAXONOMY

For each of the three hypothesised sequences of the forward roll, there is a number of indicators, and for
each indicator there is an hierarchical set of descriptors, which provide a more precise account of the limb
and body position. Both indicators and descriptors are used to assist with deeper analysis of the quality of
movements exhibited within and between cohorts. Table 1 shows the descriptors, the indicators and their
accompanying abbreviation for each sequence of the forward roll.

Table 1: Taxonomy for Determining the Quality of the Forward Roll

Sequence Descriptor Indicator and code
Beginning Position and placement of the Shoulder width (sw)
hands on the surface relative to . Close to shoulder width (c)

shoulders . Wide of shoulder width (w)
Position of the arms and the . Straight arms (st)
elbows . Elbows bent back (bb

1
2
3
|
2
3. Elbow bent laterally (sb)

1. No head contact (nc)

2. Back of head (ba)

3. Crown of head (cr)

1. Two

2. Four

3. Three

4. Five

5. Six or more

1. Straight-bend-contact (sbc)
2. Remain bent (b)

3. Stay straight (ss)

4. Bend straighten (bs)

1

2

3

4

5

1

2

3

1

2

3

1

2

3

4

5

Part of the head making contact
with the surface

Number of body parts in contact
with the surface at the
commencement of the roll

Bridging Position of the hips and knees

Position of the arms during . Arms arc 180° (as)

.Close to buttocks (cb)
. Away from buttocks (ab)

. Inconsistent (in)

. Together (It)

. Knees/feet apart (kfa)

. Legs separated (la)

. Rise to stand unaided (ru)

. Balance is lost after rising (lb)
. Roll pauses (sm)

. Uses hands to assist rise (uh)

. Roll stops (rs)

rotation . Arms bent straighten (af)
. Arms “V’ shape (av)
. Arm rotation with body (ar)
. Rotate to elbow (ae)
End Position of the feet at the end of

the rotation

Leg movements

Rotational factors contributing to
errors when attempting to attain a
standing position

The descriptors, which are presented in attenuated format and accompanied acronym, shown in Table 1,
are arranged in hierarchical order from the most to the least ideal, based upon the descriptions provided by
George (1980). The first descriptor from each indicator determines a performance of highest quality. The
last descriptor for each indicator delineates the lowest quality. However, for each individual descriptor the
degree of quality of performance level can vary.

For the beginning sequence, for example, the hand position for the first descriptor points to a high quality
performance, the second to a medium, whereas the third represents low quality. Likewise for the arm/elbow
the first descriptor relates to high quality, the second and third descriptor medium and the fourth descriptor
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low quality. The first descriptor for the head position indicates the highest quality, the second descriptor
indicates slightly less quality, and the third descriptor indicates low quality. To gain a complete picture of a
performance this process is repeated for the bridging and end sequences.

Highest quality performances display all the first mentioned descriptors. Medium quality performances
may show some descriptors from high quality and some from medium quality. Low quality performances
will show mainly descriptors at the end of each descriptor list. Performers may not always exhibit
descriptors that place them in discrete high/medium/low categories, which suggests the possibility of the
existence of a performance continuum.

RASCH ANALYSIS

Rasch measurements are particularly suited to investigations in the wide range of human sciences (Bond
& Fox, 2001:189), which according to these authors is the only technique generally available for
constructing such measures. Rasch “provides a useful method for attaining approximate measures that assist
with the understanding of the processes underlying the reason why people and specifically chosen items
behave in a particular way” (Bond & Fox, 2001:19).

The hierarchically ordered descriptors, shown in Table 1, were allocated a numeral to represent their
ranking, from high to low quality. For coding purposes the descriptors judged to be the lowest quality were
allocated a zero, through to highest quality, which was given a sequential numeral depending on the number
of descriptors. For example, for the beginning sequence the descriptors were allocated the following
numerals: for the hand position of “shoulder width” ‘2, close to shoulder width ‘1’ and wide of shoulder
width *0." This procedure was repeated for each descriptor for the other indicators. Each sequence was
allocated an alphabetical code. In addition, the codes for the beginning sequence are all given the initial ‘B’,
for bridging sequences (or middle) have the letter ‘M’ was used, and for the end sequences, ‘E’. Each
mndicator therefore has a unique cryptogram. Table 2 provides a summary of the indicator codes, the
acronym for each indicator and a numerical descriptor range.

Table 2: Indicator Codes and Descriptor Range for the Three Sequences

Sequence Indicator Code Descriptor Range
Beginning (B)
Hand position BAH 0-2
Arm/elbow BEA 0-2
Head contact BHT 0-2
Contact points BCP 0-4
Bridging (M)
Hip/knee MHK 0-3
Shoulder/arm MSA 0-4
End (E)
Foot placement EFT 0-2
Final Leg movements ELM 0-2
Final rotational movements ERM 0-4

The descriptor range as shown in the final column in Table 2, reflects the range of the movement quality.
Note that the range may differ for each indicator.

Table 3 shows an example of the coding for a single person. Notwithstanding, all participants (N = 117)
were allocated a code based upon how their own individual performance matched the Taxonomy.
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Table 3: Example Of Data Code For A Single Participant

Indicator Code BAH BEA BHT BCP MHK MSA ELM EFT ERM
Descriptor Code 0 0 1 1 2 1 1 1 2

Row one, in Table 3, shows the indicator codes used for all participants. The second row, labelled
descriptor code ranking, provides an example of a range numbers that may be applicable to a single
participant.

Following the coding of each participant the software package, Quesr, developed by Adams and Koo’s
(1993) for the Australian Council of Educational Research, was used to calculate Rasch scores. Quest output
mncludes estimates of item difficulty and subject ability, and as the data for the forward roll was scored
polytomously the partial credit form of the Rasch model was employed. The partial credit model specifically
mcorporates the possibility of having differing numbers of steps for different items on the same test
(Masters, 1982). An additional feature of this model is that “when a variable indicating a single particular
construct has been identified, within a targeted population, the measurement of the subject’s ability (in this
case movement quality) is independent of the set of items that were administered, and the item difficulty is
independent of the set of persons used to calibrate the item” (Snyder & Sheehan, 1992: 88).

Attempting to provide a more objective analysis can provide further information about the subjects’
movement quality whereby, “meaning is added to the qualitative analysis” (Bond & Fox, 2001:14). To this
end an estimate of the difficulty ranking is provided for the items by comparing them with the subjects’
success rates, producing fit statistics that aid in the identification of the discriminatory nature of the items.
Thts information is usually presented numerically, however, due to the nature of the data employed in the
analysis of the forward roll, still images could be substituted for the numbers.

RESULTS

The output from Quest includes the item estimates and reliability statistics. The item reliability index
provides an indication of the degree to which the range and distribution of item difficulty levels is sufficient
to differentiate between subjects of near equal movement quality.

Item Estimates

In summary, the item estimates produced a mean of 0.00, SD= 0.91 and a reliability estimate = 0.71.
The fit statistics were close to 1 (1.01 and 1.00), for the unstandardised fit estimates with both the infit and
outfit mean squares showing little spread from the ideal. The ¢ values of 0.10 and 0.13 indicated that the
items were useful for the sample of subjects. No items were too easy or too difficult, which also verified this
output information.

Case Estimates

The output for the case estimates and reliability statistics indicated that the reliability of the person
movement quality was high at 0.87. The mean of the infit squares at 0.99 and the outfit means squares at
1.00 were close to or the same as the Rasch modelled expectations of 1.00. Consequently, the standardised fit
f values were around zero (-0.01 and 0.15). The mean person estimate (i.c. group average) was close to 0
indicating a well-matched item list.

Item Fit

The Quest program generates an item infit mean square map that identify those items with infit mean
square values that fall mside and/or outside the interval of 0.77 and 1.30. This is the interval, suggested by
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Wright and Stone (1979) as being an acceptable fit, however, Wright and Masters (1982) consider values
within the threshold of .70 are acceptable

Results of the analysis indicated that there were no infit mean square values less than (0.77 or greater than
1.30, i.e., the items were all elements of the same construct, namely, the quality of the forward roll.

Item Person Map: Pictorial Representation

Quest software includes an item-person map in which person movement quality and item difficulty
relations can be seen in the form of an item fit map. Estimates of fit and error can be tabulated along with
movement quality and difficulty estimates. Item difficulty is expressed in terms of logits: zero is average,
negative easier, and positive becoming more difficult. Person movement quality is estimated in relation to
item difficulty estimates the higher the positive values the better the quality of movement (Bond & Fox,
2001: 33). The numerical version of the whole item person map may be found at the [CHPER: SD
Conference (Haynes, 2006)

To reiterate, an item person map is usually expressed solely through the use of numbers, however,
through the use of pictures, as well as numerals (which appear down the left hand side) a more user-friendly
version of the map is produced. Figure 1 shows how pictures may be substituted for codes in the map of the
data for the beginning sequence of the forward roll.

Figure 1 shows the item person map, using illustrations (pictures) instead of descriptor code acronyms.
Each picture is placed on the map in the same position as its corresponding code, shown in the ‘normal’ item
fit map format. The “coloured” horizontal line, which emanates from the picture, tracks back to the
appropriate logit score.

The beginning sequence illustrations are presented under the indicator headings BAH, BEA BHT, and
BCP. Each picture under these headings is arranged hierarchically from the highest quality at the top of
Figure 1 to least quality at the bottom of Figure 1. The ‘gap’ between each descriptor picture represents the
‘true’ difference, in terms of the number of logits. That is, the distance between each picture within each
column, vertically, is the amount of difference or change in performance required to move from one position
to the next. This is because the measurement unit is a logit scale, i.e., an interval scale, which means the
equal distances up and down that scale have equal value. This is unlike, for example, a ‘Likert Scale’ where
the difference between measures, which use the terms “agree’ and ‘strongly agree’, are usually presented as
ordinal measures. Persons and items are located on the pictorial map according to their movement quality
and difficulty estimates, respectively.

In a similar fashion the bridging and end sequences may be presented as pictures. With some additional
electronic “manipulation” the movements for all sequences could be illustrated using a ‘video clip’ (as can
all the images), which may be presented using multimedia, e.g. via ‘power point’ presentation. The use of
this mode of delivery is an additional instrument aiding clarification, whilst maintaining an accurate
portrayal of the data.

Note that the pictures placed ‘below the scale’ do not indicate an accurate positioning, in terms of logits.
They do, however, illustrate the performance of each descriptor at the lowest quality.
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Figure 1: Pictorial View of the Beginning Sequence of the Forward Roll
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CONCLUSION

Many performances within the realm of human movement are examined, of necessity, using the visual
sense. Examples of such performances include not only gymnastics, but could be useful for diving, dance
and any other physical activity in which the quality of a movement is paramount.

Sport coaches and physical education teachers use the visual medium to learn about their athletes’
performance, to teach and to correct errors. What this paper provided is a method of employing visuals to
show, not only what each “level of performance” looks like, but also what the real gap is in terms of logits,
between one level of performance and the next. To this end moving an individual from one “place” to
another can be seen both in terms of how difficult the task may be as well as what the next level of
performance looks like.

This paper presented the notion that pictures, gleaned from video recordings for the purpose of
illustration, can still accurately demonstrate the step difficulty and level of quality of a particular movement.
These images can under certain circumstances replace numbers. The main advantage is that sports people
can see where they are going and have some idea how difficult it is going to be to achieve the next level.
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Abstract A low-cost system has been developed to determine the time intervals between a table tennis
ball’s impacts after a serve. A ball impact on the table causes a typical acoustic signal. Two microphones
are used for recording this signal, both fixed in metallic boxes. The boxes are put near the net onto both
halves of the table. The signals acquired from the microphones are pre-processed electronically and then
fed to a microcontroller, which calculates the time intervals. The microcontroller is connected via a serial
port to a PC, notebook or PDA, which then displays the results. The overall system is not bound to a
specific table tennis table and can be transported easily to the environment (table, hall, etc.), where it is
used. No user intervention is required between successive serves because of an automated system reset
into a ‘wait state’ after a short period without an acoustic impact signal. Time intervals are presented to
the player immediately after having served. One typical task in training, for example, is to play a short
serve minimizing the time interval between the first and second impact on the opponent’s side of the
table. From physical considerations (speed of sound) a maximum error of not more than 4ms in the time
intervals was expected. A table tennis robot and high-speed video recordings were used to evaluate the
system. For the testing procedure 30 serves were performed. Three different impact scenarios were
investigated. Durations were estimated simultaneously with the microphones and from the camera
recordings. Time intervals of each trial were compared by calculating the absolute time difference for the
results of both systems. The experimental results confirmed the assumptions and showed time differences
less than 2ms for typical playing situations.

Keywords: feedback system, table tennis, low-cost

INTRODUCTION

Several authors have combined successfully computers and sensor technologies to build Computer-
Human-Interaction (CHI) systems in table tennis. Some of them focused on giving ball position feedback in
training situations (Baca & Kornfeind, 2004 & 2006; Hey & Carter, 2005) to assist athletes in their technique
training. Others developed software- and hardware-interfaces for virtual reality scenarios in order to simulate
real playing situations against virtual opponents (Rusdorf & Brunnett, 2005). Another interesting field of
application results from the combination of physical activity and entertainment were the user’s motion can
act as input for computer games. For example, Ishii et al. (1999) designed a multimedia assisted table tennis
game (“PingPongPlus”) that incorporates sensing, sound and projection technologies. The number of
network games is growing very fast, also in table tennis. It can be played virtually over the internet, even
against two opponents (Mueller & Gibbs, 2007).

Computer-based systems may assist service training too. For a table tennis player the service is a key
factor for winning a rally. Athletes spend considerable time in training to improve their serve. Serving speed
plays an important role in addition to the spin and the positioning of the ball on the table. The latter is
difficult to estimate from youth players. In order to practise table tennis serves independently, i.e. without the
need of an assisting coach, an easy-to-use feedback system for the detection of the time intervals of services
(“TimeCheck”) has been constructed and manufactured (Figure 1). This system can determine the time
interval between the ball’s first and second impact on the table immediately after a serve (2-Ball mode). In
the case of short serves, it also determines the time interval between the second and third impact (3-Ball
mode).
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Figure 1: Components of TimeCheck and functional overview (block diagram).

During the development process the authors considered two different solutions for this task. The first one
was based on accelerometers to measure the mechanical vibrations in the tabletop during the impact of the
ball on the table surface. The alterative was an acoustic solution which measures the impact sounds with two
microphones positioned on the table. Because of lower sensor costs and less sensitivity against disturbing
vibrations the second concept was used. Typical values for time intervals of services were observed in the
range between 250 and 500ms, depending on the skill level of players and the type of serve (e.g. top spin,
back spin). In order to be applicable in practise, e.g. to recognize improvements, the time error of the system
should therefore not exceed 5ms.

SYSTEM DESCRIPTION

The main components of the system are two microphones (sensors), an electronic box for signal
processing and a computer running a simple program (Figure 2). The microphones acquire the acoustic
information each time a ball hits the table and are positioned on the tabletop in front of the net (centre line,
approx. Scm distance to the net). After the signals have been pre-amplified (inside the microphones), input
voltages above an adjustable threshold (->sensitivity) are detected in the comparator stage. Because of
frequent changes in polarity of the input signal (microphone) the comparator produces a sequence of short
pulses at TTL level (TRUE: +5V, FALSE: 0V). A timer IC (NE555) is then used to convert the pulse
repetition into a trigger signal, which initiates the capturing procedure in the microcontroller (PIC 16F6284).

: Sensitivity
B

Tienor IC

MICROPHONE 1 |

GND

Detection
Stage

P Comparator Trigger
MICROPHONE 2

ELECTRONICS ~ COMPUTER
Figure 2: Detailed description of the components used and information flow.

Whenever a trigger occurs, a software routine inside the uC captures the actual value of an internal 16-
Bit timer (resolution 8ps/cycle) and stores it into an array. Depending on the selected mode of operation (2
or 3 ball impacts), the differences between the stored timer entries are calculated and transmitted (RS-232) to
the computer. Software written in LabVIEW™ (Figure 3) receives the data, converts them into standard data
types and stores the time intervals in a file (optionally). Numerical and graphical display elements are used
for visualization, whereby a graphical indicator can be used for fast comprehension without the need to read
the numerical values (e.g. during playing).
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Figure 3: Screenshot of the GUI (LabVIEW™ program).

TIME DURATION ERRORS

In Figure 4, two different ball impact scenarios on the table are shown to describe the expected errors
caused by the different latency periods of the acoustic sound signals. In case A (ball A, distances s;, s,) the
ball first hits the tabletop near the end line so that the distance between impact point and sensor is
comparatively long (s;=1.00m). The second impact point is near the positioned microphone which results in
a shorter distance (s,=0.15m). Assuming a constant sound velocity in the air (c=343m/s @20°C) the signal
propagation delays can be calculated as t;= s,/c=0.0029s and t,= s,/c=0.0004s. Calculating now the absolute
time difference At=t;-t;, an error of about 2.5ms can be expected. In the second case
(ball B, distance s;), the ball hits the table in equal distances to the microphone positions. The delay can be
calculated as t;= s;/c for both table halves. Since the time difference will be zero, this case can be
characterized as the best one. Considering the worst case, where the first impact position is directly at the
corner (crossing point of side- and end line, s=1.5m) and the second one exactly on the microphone (s=0m) a
maximum time error of about 4.4ms can be expected.
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Figure 4: Two impact scenarios with different impact positions.

METHODS

To validate the results of the TimeCheck device, optical measurements with two synchronized high-
speed cameras (MotionPro 2000, RedLake, USA) have been done simultaneously. The cameras were
positioned beside the table and were adjusted in height shortly above the tabletop (Figure S5). Using
additional lights it was possible to record serves with a frame rate of 2000Hz (At=0.0005s) and a shutter time
of 1/4000s (to avoid motion blur). Three series of 10 serves each, categorized into different impact pair
positions (see Table 1) were tested and recorded using a ball robot machine (Robo Pro Plus, TIBHAR,
Germany). Each impact pair positions is defined by P1 (first impact point) and P2 (second impact point).
After adjusting the ball robot to a predefined impact pair position, a ball was served on the table. Variations

97



in ball positioning caused by the ball robot machine were less than +2.5cm. The results of the TimeCheck
device (in ms) were registered and the videos of the high-speed cameras were analyzed using the
manufacturer’s software (MiDAS). Time indices of each impact were identified by selecting manually the
frame where the ball changes its direction. Time differences were calculated. Since a maximum resolution
error of 0.5ms may be assumed for both measurements, the maximum resolution error for this difference
should be 1ms. Mean and maximum values of the absolute values of the time differences were calculated.

\\+\\\\\\\\\\\\\\\\\\ Y

§

‘

ALV VLR

BALL ROBOT

CAM 2 CAM 1

Figure 5: Measurement setup for the tests: two cameras + external lights, two
microphones (connected to electronic box) and ball robot machine.

Table 1. Approximate ball impact coordinates of the different impact pair positions on the table.

Impact P1 coordinates (x | y) P2 coordinates (x | y) 8 S; As
pair [m] [m] [m] [m] [m]
position
1 0.6510.55 2.4910.35 0.53 0.98 0.45
2 0.40|0.76 2.19]0.76 0.74 0.59 0.15
3 0.15]0.76 2.3910.76 0.99 0.79 0.20
RESULTS

Both test methods resulted in similar time intervals, which changed slightly over the different impact pair
positions. Mean values and standard deviations for each method as well as for the time interval differences
are listed in Table 2. The standard deviations of the time intervals depend on variations caused by the ball
robot machine. They are, however, negligible when calculating the time differences between the two
different measurement methods. None of the trials resulted in a differences greater than 1.5ms.

Table 2: Time interval results from TimeCheck versus the high-speed cameras.
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Location TimeCheck HS-Camera absolute differences
[ms] [ms] [ms]
1 336.80 + 10.10 336.35+£9.89 0.45+0.42
2 355.40 + 15.82 356.05 + 15.72 0.65+0.39
3 576.70 + 13.15 577.85 +13.21 1.15+0.39

DISCUSSION AND CONCLUSION

The validity of the device developed (TimeCheck) could be shown. In typical impact situations not even
half of the maximum expected error was observed. Based on these findings it may be concluded that athletes
can trust the feedback information given in training.
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Abstract. The Brownlow medal is the highest individual honour that can be bestowed upon an AFL
footballer. In each of the 176 home and away matches for a season, votes are assigned to the three best
players (3 — first, 2 — second, 1- third) by the umpires that preside over the game. With the use of an
ordinal logistic regression model retrospectively applied to past data, Bailey and Clarke (2002)
constructed a 13 variable model that has successfully been used to identify the leading candidates for each
Brownlow medal count. This paper seeks to build on this work by identifying an additional 12 variables
relating to player and match statistics that are highly significant predictors of the number of votes
received (p<0.001). We then use a range of various measures of goodness of fit, to explore the difference
between statistical significance and practical significance by determining how much benefit each
additional variable adds to the prediction process. By varying the size of the training data and holdout
samples it is possible to determine the optimal size for training data, along with measuring the detrimental
effects of over-fitting the data. Whilst it is possible to use mathematical models to aid in the prediction of
the Brownlow medal, there is clearly a limit to the benefit achieved. This paper identifies this limit and
determines how much data are required to achieve the optimal solution.

Keywords: Brownlow medal, Ordinal logistic regression, Goodness of fit

INTRODUCTION

During the 2000 AFL football season, discussion arose as to the best possible way to predict the winner
of the Brownlow medal, both before and during the actual count. With a large number of match performance
statistics readily available it was felt that a mathematical modelling process might well assist in the objective
assignment of a player’s probability of polling votes. Based on data collected from the 1997, 1998, and 1999
seasons, an ordinal logistic regression model was originally constructed and applied to the 2000 season.
Predicted votes for each match were then tallied over the season to provide players predicted totals for the
year. Following considerable success and media attention, the ordinal regression model was further enhanced
for the 2001 season. Although 25 variables were now identified as being statistically significant predictors
(p<0.001), the practical benefit of some variables came into question. Additionally, it was questioned just
how much data were optimally required to accurately develop such a model. To answer these questions, a
range of practical measures were developed, and with seven complete seasons of data, a comprehensive
analysis was conducted exploring the practical benefit of each variable. Training datasets of differing sizes
were further incorporated to ascertain the optimal amount of data required to build such models.

Database

A database was constructed that comprised of data collected from each regular season AFL match played
between 1997 and 2003 (1232 games). For each game, an array of individual match statistics is readily
available, both in the newspapers and via the internet. Whilst some predictors of votes are created from the
past history of the players, most predictors are derived from match statistics.

100



Multivariate model

Using the number of votes polled as the outcome, a multiple ordinal logistic regression was constructed.
Seven seasons with 176 matches per season and 44 players per match (7744 data points per season) were
used to progressively construct a 25-variable multivariate model with all variables in the model statistically
significant at a level of p<0.001. While backward elimination selection techniques were also used in model
construction, to show the relative importance of each variable, results are presented and graphed in stepwise
fashion. From Table 1 the 25 stages of development can be seen.

In addition to the 19 first order effects that were identified, there were six interactions between variables
that were found to be statistically significant (p<0.001). Each interaction term was comprised of a first order
effect, suggesting that the interaction term was acting as a fine tuning process for relationships that were not
perfectly linear.

Table 1: List of variables (in order) found to be statistically significant predictors of votes polled (p<0.001)

Stage | Variable Description

1 Disposals Number of kicks & handballs

2 + Result Margin of victory

3 + Win Player’s team won or lost

4 + (Result*Win) Interaction between variables Result & Win

5 + Hit outs - Tap outs by ruckmen

6 + Standout Standout player on ground

7 + Best players Best players as given by AFL website

8 + Good average How often players previously polled when not expected

9 + Bad average How often players didn’t polled when expected to

10 + (Good*Bad) Interaction between variables Good and Bad average

11 + Goals Number of goals kicked

12 + Marks Number of marks taken

13 + (Marks*Goals) Interaction between variables Marks & Goals

14 + (Disposals*Goals) | Interaction between variables Disposals & Goals

15 + Position Named position of player on ground

16 + (Disposal*Position) | Interaction between variables Disposals and Position

17 + Inside 50 Number times player sends the ball inside 50 metre arc

18 + Scoring shots Number of team scoring shots

19 + Distinct appearance | Unusual skin or hair colour

20 + Captain Player is the team captain

21 + Average votes Total number of votes polled in past counts

22 + Tackles Number of tackles laid for match

23 + Rebounds Number of times the player rebounded the ball from defence

24 + Frees for Number of frees issued to player

25 + (Disposal*Best) Interaction between variables Disposals and Best players
Goodness of fit

Goodness of fit can be determined at two different levels relating to the prediction of votes for each
game, or the prediction of the votes that each player will poll for the season.

When fitting an ordinal logistic regression, a clear guide to the goodness of fit of the model can be
gauged from the log likelihood estimate. Because a change in -2log likelihood can be well approximated by a
chi-square distribution, the statistical significance of additional variables can readily be determined. By
examining Figure 1 from left to right, we can see the corresponding reduction in -2log likelihood as each
new variable is added to the model, with the greatest improvements occurring over the first seven stages of
the model.
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Stage of model development

Figure 1: -2 log likelihood for each stage of model development

Average Rank

Using the 25-variable multivariate ordinal regression model, each player was assigned a probability of
polling three votes, two votes or one vote for each match. A predicted value for the number of votes that
each player was expected to get for each game was created by the following formula -

Predicted Votes =3 * Pr(3 votes) + 2 * Pr(2 votes) + Pr(I vote) )

Based on the predicted number of votes, the 44 players for each match could then be ranked in
accordance with their predicted vote total. The average rank of players that poll votes provides a practical
way to measure the goodness of fit for models, with a lower rank indicating a better fit to the data. For
example, from Figure 2 it can be seen that using a model with only disposals as a predictor, the average rank

of all players that polled three votes was about six. With the full 25-variable model the average rank of
players that poll three votes is only 3.2.
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Figure 2: Average rank for vote getters as variables are added to the model
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Top three for the game

Having ranked players for each match according to their predicted vote total, we can also measure how
often the leading ranked player is awarded three votes. From Figure 3 we can see that the leading ranked
player actually polls three votes, 43% of the time. Similarly, the leading ranked player has a 73% chance of
polling any votes (three, two or one). Conversely, the player who polls three votes will be ranked within the
top three players in 72% of all games. Once again, there is a clear indication from Figure 3 that the majority
of improvement occurs over the first 10 stages of model development, with negligible improvement after

that.
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Figure 3: Within game goodness of fit measures for stages of model development

In addition to determining goodness of fit at a match level, players predicted vote totals can be
aggregated to provide player predictions for the season.

Goodness of fit for season

By tallying each player’s predicted number of votes for each match as given by equation 1, and
aggregating for the 22 matches for the season, it was possible to derive a predicted Brownlow total for each
player for the year. A simple measure of goodness of fit can then be derived by measuring the Absolute
Average Error (AAE) between the predicted total and the actual total for each player for the season. When
predicting the yearly total for players, of particular interest is the performance of the players most likely to
win the Brownlow medal rather than all players, thus the AAE for the leading 20 predicted players is also

considered.
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Figure 4: AAE for seasonal vote totals for 25 stages of model development
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From Figure 4 we can see that most additional benefit can be achieved with the first 10 of the 25
statistically significant predictors. The annual AEE for all players can be reduced to approximately one vote,
but there is higher variability in the leading players with an AEE of about three and a half votes. Based on
the AAE, it is then possible to determine the proportion of players that the modelling approach can
accurately predict to within one vote. From Figure 5, we can see that the modelling approach tops out after
the addition of about 10 variables, successfully predicting 68% of all players to within one vote of the actual
total. Similarly, Figure S also shows that the model can successfully predict 83% of players within two votes,
and 90% of players within three votes.
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Figure 5: Predicted top 10 who finish in top 10 and AAE <1,2 & 3

Top 10 for season

By measuring the proportion of players that were ranked by the models to finish in the top 10 and
actually did finish in the top10, we can further gauge predictive capacity. From Figure 5 we can see that after
the addition of the first 10 variables, little practical benefit could be achieved with regards to accurately
identifying the leading 10 contenders to win the Brownlow medal, with the modelling approach having about
74% accuracy in predicting leading players.

Measuring the bias of over-fitting the data

All previously defined criteria for goodness of fit have been determined by using all seven years of data
as both a training set to determine parameter estimates and a holdout sample to determine predictability, thus
over-fitting the data. In order to measure the bias of over-fitting the data, the same 25 parameter model is
applied to six additional training datasets, with lengths ranging from one to six years. Goodness of fit has
been determined from holdout samples also ranging from one to six years, with the addition of training and
holdout samples adding to seven years. Thus, when the training dataset was 1997, the corresponding
prediction model was applied to the remainder of the data (1998-2003). When two years worth of training
data were used (1997 & 1998), the holdout sample used was 1999 to 2003.
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Figure 6: Average rank with differing training and holdout sample sizes

By considering the average rank for the players that polled votes, it is possible to gauge the relative
accuracy of differing sets of training data. From Figure 6 it can be seen that when only the 1997 season was
used as a training dataset, the average rank for players polling three votes was 3.5. When three seasons worth
of data were used (97-99), the average rank for players polling three votes was reduced to 3.35. When the
data were over-fitted, by developing on all seven seasons and then reapplying to the same data, the average
rank for players polling three votes was reduced to 3.22.
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Figure 7: Within game measures of goodness of fit

When only the 1997 season was used as a training dataset, the leading ranked player according to the
modelling process would poll three votes 36% of the time. By increasing the training data set to two years,
the three vote getter could successfully be identified 40% of the time, but it would appear that little benefit
could be gained by using more than two years worth of training data, as the percentage of best players
successfully identified alters little between two and six years. When the data are over-fitted, the bias of over
fitting can be approximated at 2% with the three vote getter identified 42% of the time.

When only the 1997 season is used as a holdout sample, the leading ranked player would poll votes 70%
of the time. This figure improves slightly to 72% with either two, three of four years worth of holdout data,
but drops again slightly when five of six years of training data are used; perhaps reflecting increased

variability in the holdout sample. When the data are over-fitted, the leading ranked player polls votes 72% of
the time.
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The final measure considered in Figure 7 is how often the player who polls three votes is ranked in the
top three positions by the models. When only the 1997 season is used as a training sample, the three vote
getter was only ranked in the top three 65% of the time. This figure improves to 70% with two years worth
of training data, but shows little improvement after that. When over-fitted, the three vote getter is ranked in

the top three 72% of the time.
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Figure 8: Seasonal AAE for all players and leading 20 players

When considering criteria for goodness of fit for the season, the bias associated with over-fitting the data
is less pronounced. When only the 1997 season is used, the AAE between each player’s predicted and actual
number of votes polled for the season is 1.1, whilst for the leading 20 ranked players it is 3.9 (see Figure 8).
When at least two seasons are used for the holdout sample, the AAE for all players is reduced to one, whilst
for the leading 20 it is reduced to 3.5. Although there is no difference in AAE for all players when the data

are over-fitted, the AAE for the leading 20 players is higher when the data are over-fitted.
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Figure 9: Season measures of goodness of fit for differing holdout samples

When only the 1997 season is used as a training dataset, the total votes polled by each player can be
identified to within one vote for 65% of all players. It can be seen from Figure 9 that when the size of the
training dataset is doubled, this figure improves to 67%. When six years of training data are used, this figure
improves to 68%, but no additional benefit is apparent by over-fitting the data as the over-fitted data can still

only identify 68% of all players to within one vote of their seasonal tally.

Similarly, the percentage of players that are accurately identified to within two or three votes, appears to
improve when the training dataset is increased from one to two years, but little further improvement can then

be achieved, and when over-fitted, results are slightly worse.
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The percentage of players that are accurately identified as finishing the season in the top 10, shows
slight improvement as the size of the training data increases, although as only 10 players are considered each
year, there is higher variability is this measure of goodness of fit.

DISCUSSION

While 25 variables were found to be highly statistically significant predictors for the number of votes
polled, the practical benefit of many of these variables is questionable, with a 10 variable model producing
similar results.

This research suggests that goodness of fit of prediction models is dependent upon the quality and
quantity of data used to construct the model. A minimum of about three seasons (528 games) is required
from which to develop models, and although the quality of models does continue to improve with larger
holdout samples, the improvement appears minimal. The similarities between the Brownlow medal and a
horse race, reaffirms the finding of Benter (1994) in developing multivariate models for horse racing in Hong
Kong. Benter states “... the minimum amount of data needed for adequate model development and testing
samples is in the range of 500 to 1000 races. More is helpful, but out-of-sample predictive accuracy does not
seem to improve with development samples greater than 1000 races”.

CONCLUSION

Building on work previously developed by the authors, this paper uses ordinal logistic regression to
identify match and player features that can be linked to the polling of Brownlow votes in AFL football. By
applying this prediction model to matches played throughout the course of the AFL season, each individual
player was assigned a probability of polling votes. By aggregating individual predictions, each player could
then be assigned a probability of winning the Brownlow medal. A series of measures were developed to
determine goodness of fit along with the minimal size of holdout samples required to accurately develop
such models. Results suggest a minimum data of 500 matches and a maximum of 10 variables are required
to build an effective model.
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Abstract. Presenting statistical predictions that are simultaneously representative of a team’s likelihood
of winning and graphically simple enough to be widely interpretable remains a constant challenge for the
sport statistician. This study focuses on the process involved in transforming a mass of performance
variables from “live-streaming” data into a single web-based phases of play plot. The algorithm utilised
regresses a number of performance variables to a single binary variable (win/loss) for streamed AFL data,
and evaluates each team’s chances of winning for live and post-match analysis using logistic regression.
Summary game data was gathered from 176 home and away games from the 2006 AFL season and used
to forward predict the entire 2007 home and away AFL season. Using transaction data provided by
ProWess Sports a series of algorithms were written for use in Excel. This algorithm extracts the required
performance variables, runs the logistic regression model, and generates the relative phase plot in real
time; where relative phase describes the overall interaction between the two teams. Statistically, the plot
provides an effective representation of the state of the game, illustrating the calculated probability of the
home team winning relative to the opposition at any point in time. Graphically the plot is enhanced by
adding images of a players guernsey when a goal is scored. This combination provides the viewer with an
objective probability assessment of the current state of the game. It is also useful as an instantaneous
coaching tool. The final product delivers both a single statistical measure and graphical representation of
the state of the game at any point in time for use by coaches and the general football public alike.

Keywords: AFL, algorithm, phases of play.

INTRODUCTION

Australian rules football is the countries most popular winter sport. The Australian Football League
(AFL) oversees the administration of the game. At the elite level of the competition, known as AFL football,
currently 16 teams play a regular season of 22 games, and potentially four weeks of finals. In a regular game
of AFL there are two teams of 22 players, of which only 18 are permitted on the field at any one time, with
the remaining four players “benched”. Players are then rotated on and off the bench, at the coaches request,
for many reasons, including rotating “fresh legs” off the bench, and players coming off the field due to coach
instigated disciplinary actions (e.g. conceding a 50-metre penalty). Each team typically comprises three full-
backs, three half-backs, three midfielders, three ruck/rovers, three half-forwards, three full-forwards and four
players on the bench. Each player’s position can change throughout a match, and there is no restriction on
where a player can move. There is currently no limit to the numbers of interchanges allowed.

AFL football remains one of the hardest games to analyse in world sport due to the wide array of actions
each player can take, for example, from kicking a goal, to picking up the ‘loose ball’, to shepherding
(blocking) a player away from the ball. The average AFL game consists of approximately 2,500 unique
transactions, with each transaction consisting of up to three actions, or unique statistics, (e.g. kick long;
kicking to a contest; inside 50) attributed to one of the 44 players contesting a game. In this research, we
consider breaking down these performance variables into a single probability describing the state of the
game. Previous analysis has focused merely on the frequency of event occurrences, such as number of kicks
in an AFL match, forehand winners in tennis, corners in soccer etc. Gréhaigne et al. (1997) state that such
sports are made up of complex interactions between team/player performance variables and thus frequencies
of these performance variables can’t capture the full complexity of team and dual sport as an interactive
system.
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Kelso (1984), in a physical sense, was the first to introduce the idea of phase transitions using human
bimanual coordination. The experiment involved asking participants to cycle their hands at the wrist in the
horizontal plane in an asymmetrical mode. He found that initially phase relations were anti-phase stable, that
is, synchronous motion of the wrists in the opposite direction. As the frequencies were increased through
instructions the phase difference became more evident however, after this transition period the two motions
were now in-phase stable, that is, synchronous motion of the wrists in the same direction. This is known as
one-way transition (anti-phase — in-phase) since the jump from anti-phase stable to in-phase stable occurs at
a critical point but the reverse is not true regardless of the cycling frequency. Relative phase is defined as
phase-lag, that is, when the two motions are anti-phase stable this represents 0° of relative phase, similarly
in-phase represents 180 ° of relative phase. The results of the study suggest that relative phase is an adept
collective variable which can be used to address the change in phase relation in bimanual coordination.

The application of phases in a physical sense to a sporting contest is in its infancy. Several recent papers
(McGarry et al., 2002; Palut and Zanone, 2005) proposed the idea that two teams/players interact together in
a sporting contest in terms of dynamic system theory, that is, in an active-reactive nature. This idea is utilised
and discussed later.

McGarry et al. (1999) set out to find whether championship squash could be described in terms of
dynamic system theory. The experiment conducted involved data from previous studies by McGarry and
Franks (1995, 1996) from the 1988 Men's Canadian Open Squash Championship. The aim was to determine
whether system perturbations are subject to perceptual detection and whether the level of expertise of the
observer was associated with the detection of perturbation ‘onsets’ and perturbation ‘offsets’. A perturbation
onset is the transition from stable — unstable. Similarly a perturbation offset is the transition from unstable
— stable. Sixty rallies were analyzed at random by six expert and non-expert observers to identify which
shot/s, if any, caused a perturbation onset or perturbation offset and the reason why the perturbation
occurred. If three or more expert observers agreed upon a perturbation ‘onset’ within a single shot then it was
considered valid. They concluded that not only were expert observers significantly more likely to agree upon
when a perturbation onset occurred but also why the perturbation onset exists.

Franks and Miller (1986) found that coaches have the same level of difficulty in remembering critical
events as eyewitnesses have in recalling criminal events. Franks and Miller (1991) showed that coaches can’t
accurately recall pertinent sequential information prior to a critical event occurring. This led them to develop
a new method to train coaches to observe and remember. They proposed the idea to train the observational
skills of coaches using a video training method. The results suggested that although coaches were incapable
of remembering more than 40% of pertinent sequential information, coaches can be trained to observe and
remember sequential information prior to a critical event occurring. This finding suggests to us that a simple
reflective measure is needed to assist coaches in event recall.

Bedford and Baglin (2006) looked at describing ice hockey (NHL) from a probabilistic sense; their
objective was to describe a team’s game day performance using individual team and relative phase plots.
They concluded that the results of the study gave an accurate measure of a team’s performance at nearly all
points in a game. Their phase plots were smoothed retrospectively; therefore the predictive power of the
phases at specific intervals in the match was not investigated. They also suggested that these phases of play
at a player based level should be investigated in order to assist the coach in fielding the best team for the best
scenario at any time in the match.

This research addresses these limitations in current quantitative sports analysis by giving a graphical and
statistical representation of the state of the game at any point in time. The subject of this research, phases of
play, can be described as a complex dynamical system whereby teams/players fluctuate between invariant
(stable) and variant (unstable) states (in phase and anti-phase respectively). The idea is simple, recorded
behaviours/statistics would yield instabilities in the system - using this information coaches could objectively
change future behaviours from past performances.

METHOD AND RESULTS

ProWess Sports provide comprehensive statistics to media outlets, AFL clubs, and subscribers via both
their website (www.pro-stats.com.au) and dedicated software. Previously they had concentrated on detailed
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post-match statistics, however in mid 2007 they decided to develop a website dedicated to live-match
statistics (www.realfooty.com.au/livestats). The website refreshes live statistics approximately every 30
seconds and displays the following 20 performance variables: kicks, handballs, marks, inside 50’s, tackles,
spoils, hitouts, 1* possession from an umpire control situation, clearances, goals, behinds, rushed behinds,
frees for, marks inside 50, turnovers, goals from general play, goals from free kicks, goals from marks, goals
from kick ins and goals from stoppages. An artificial variable, cumulative win was created and is simply
defined as the percentage of games won prior to the commencement of a match. Summary game data was
then gathered from ProEdge, software developed by ProWess Sports. Due to different definitions of data
supplied, turnovers were excluded from the statistical analysis.

Firstly the contribution of each performance variable to a team winning a game needs to be considered.
Stewart et al. (2007) set out to find which individual performance variables in AFL were important, and how
much each variable contributed to a team winning a match. The objective was to identify inefficiencies in the
market for recruiting professional AFL players. This was done by regressing S1 “primary variables” to a
single variable margin using Ordinary Least Squares regression (OLS). Since margin was used as the
dependant variable goals, behinds and rushed behinds had to be excluded from the model, as their inclusion
is an exact predictor of margin. This meant that the final model would be biased against forwards, in
particular full forwards.

Bedford and Baglin (2006) applied logistic regression to NHL summary game data for the season 2005-
2006 for use in the forward prediction of season 2006-2007 based on 19 performance variables. Win/loss
was used as the dependent variable, as the research focused on what contributes to a win (or loss) rather than
to scoring a goal (or not). As such, score could not be ignored as an independent variable as it in itself is an
outcome of a perturbation in the phases of play. Therefore logistic regression was applied to the previously
mentioned 20 performance variables (excluding turnovers) on the 2006 AFL season to use in forward
predicting the 2007 AFL season (see Table 1). Separate logistic regression models were applied to home and
away games due to overwhelming evidence of home ground advantage (e.g. Clarke (1993)). By including
cumulative win percentage into the model, the model initialises prior to the start of the match. These two
models correctly classified 90.75% of wins.

Table 1: Logistic Regression Output

Coefficient Significance OR
Variable Home Away | Home Away | Home Awa
Cumulative win % (CUM) 1.616 0.450 | 0.088 0.601 | 5.030 1.568
Kick (KCK) 0.013 0.055| 0.545 0.016 | 1.013 1.057
Handball (HBL) -0.025 -0.027 | 0.012 0.011] 0975 0.973
Mark (MRK) 0.009 -0.058 | 0.725 0.024| 1.009 0.943
Inside 50 (150) -0.041 -0.035 ] 0366 0.510] 0.960 0.966
Tackle (TKL) -0.011 -0.007 | 0.520 0.708 | 0.989 0.993
Spoil (SPL) -0.027 -0.022 | 0.505 0598 0973 0979
Hitout (HIT) -0.012 0.059 | 0.738 0.060| 0.988 1.061
1st Possession (1°7) -0.054 -0.232 | 0450 0.002] 0947 0.793
Clearance (CLE) -0.012 0.007 | 0.873 0.929| 0.988 1.007
Goal (GLS) 0.610 0.482| 0.001 0.026]| 1.841 1.619
Behind (BHS) -0.195 0.133 | 0.045 0.144| 0.823 1.142
Rushed Behind (RUS) 0.250 -0.122 | 0.050 0337 1.284 0.885
Free Kick For (F/F) -0.077 -0.139 | 0.121 0.014| 0926 0.870
Mark Inside 50 (M50) 0.167 0.135| 0.047 0.155 1.182 1.145
Goal from General Play (GFG) 0.073 0.047 | 0.713 0.826 ] 1.075 1.048
Goal from Free Kick (GFF) -0.126 0.032| 0.628 0904 | 0.882 1.033
Goal from Mark (GFM) -0.547 -0.172 | 0.009 0456 0.579 0.842
Goal from Kick In (GFK) 0.095 -0.319 | 0.655 0.223 1.100 0.727
Goal From Stoppage (GFS) 0.115 0.225] 0396 0.124] 1.122 1.252
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Notably, running a separate logistic regression model on the binary variable win/loss using only
cumulative win % correctly predicts 62.68% of all games. This suggests future performances are somewhat
dependant on past performances. From Table 1, kicks have a positive effect on win, whereas handballs have
a negative effect. Tackles and spoils are also negative which is probably due to the player that is in the act of
tackling/spoiling not having possession of the ball (see (Stewart, Mitchell and Stavros 2007) for greater
treatment) and therefore unable to score a goal and win. Goals from general play are worth the most for
home and away sides compared to goals from free kicks and goals from marks (Note that GLS = GFG + GFF
+ GFM i.e. GFK/GFS must also be either GFG/GFF/GFM).

The logistic regression model is then utilised on the cumulative statistics of the home and away team
after every each transaction. The probability of team i/ winning at time # regardless of opposition is given by:

losi(x)

R(xr): l+eIOgitiix’) (1)
where x,is the cumulative statistics of team i at time #; i = 0 (away) and i = 1 (home).

Hence the probability of the home team winning relative to the opposition is given by

R(x)
P(x,)+P(x,)

The main aim of this research was to construct live statistical predictions that are both representative of a
team’s likelihood of winning and graphically simple enough to be widely interpretable for coaches and the
general football public alike. This was achieved by integrating interchange and transaction data, where
interchange data comprises a time series of when players were rotated off the “bench” and transaction data
contains detailed descriptions of event occurrences and when those events occurred. This gives the viewer a
real time objective probability assessment of a team’s performance, and which players contribute to high
phase (more than 50% chance of winning) and low phase (less than 50% chance of winning).

)

relative(x, ) =

The phases were investigated in terms of its reliability. Therefore the previously mentioned regression
model was applied to the 2007 AFL season summary game data at quarter time, half time and three quarter
time and compared with the % correct games classified by score, at the same time intervals, for all games
(see Table 2). The results suggest that score is a better predictor at half time and three quarter time than the
phases. However the phases at games end indicates that 9.25% of the time the team behind on the scoreboard
should have won the game. This is an important finding as it indicates factors other than score tipped the
result in favour of the losing side. To our mind, this begs further investigation — exactly why did the losing
team not win?

Table 2: Percentage of games correctly classified by score and the phases at specific intervals

Quarter Score Phases
68.82% 71.68%
78.82%  74.57%
92.35%  82.08%
100%  90.75%

HOW N -

If the games in which the phases incorrectly predicted the winner are removed from the data set, then the
phases are a better predictor at quarter time, half time and score is only a marginally better predictor at three
quarter time as shown in Table 3. This suggests that there may be some variables (possibly kicks) which in
significant quantities for the same team (which is known as “tempo” football) may override the fact that the
margin is significantly different. If the model can be adjusted for this specific problem this will significantly
increase the % correctly classified earlier.
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Table 3: Percentage of games correctly classified by score and the phases at specific intervals in which the phases
correctly classified the final result

Quarter  Score Phases
1 69.67% 74.52%
2 77.42% 78.98%
3 90.97% 89.17%
4 100% 100%

From (2) the average relative phase of the team by each player can be calculated relative to the time that
player spent on ground (TOG). Previous analysis in team sports with the trait of measurable player
independence, such as baseball, bases a player’s individual performance on individual quantifiable statistics.
However, in AFL football, if we accept the idea that a players individual performance (specifically key
position players such as full forwards) is dependent on their teammates then we arrive at an inadequate
method for rating a players impact on the a game as a whole. However for players that are on the field for the
entire game, such as midfielders, their measurable impact on the game relative to time on ground does not
give a true representation on their impact to the game given they have not left the field. Further, some players
receive an inordinately high phase probability due to the fact they happen to be on the field when the team is
in high phase without contributing to the system. This is seen as a limitation and worth further investigation.

Table 4: 2007 AFL Home and Away Season Round 3 Carlton vs. Essendon.

Carlton Essendon

Player no. Playername | TOG  Rank | Player no. Playername | TOG  Rank
6 Simpson 105:32 1 19 Hille 66:23 1
2 Russell 108:06 2 30 Ryder 107:46 2
8 Whitnall 82:09 3 25 Lucas 117:20 3
4 Gibbs 99:11 4 4 Watson 67:47 4
28 Cloke 65:46 5 13 Lovett 111:36 5
44 Carrazzo 114:58 6 1 Johnson 126:31 6
34 Wiggins 91:16 7 10 McVeigh 126:31 7
17 O'hAilpin 113:41 8 18 Lloyd 126:31 8
24 Stevens 122:15 9 22 Michael 126:31 9
25 Fevola 126:31 10 29 Davey 126:31 10
29 Scotland 126:31 11 31 Fletcher 126:31 11
30 Waite 126:31 12 33 McPhee 126:31 12
32 Thornton 126:31 13 11 Peverill 121:22 13
33 Houlihan 126:31 14 5 Hird 104:05 14
7 Bentick 84:48 15 26 Heffernan 110:06 15
14 Fisher 99:22 16 7 Jetta 86:13 16
19 Betts 108:18 17 24 Stanton 107:44 17
3 Murphy 108:30 18 8 Winderlich 112:26 18
12 Lappin 97:45 19 2 Dyson 53:21 19
1 Walker 100:27 20 20 Slattery 111:30 20
5 Kennedy 95:46 21 6 Monfries 75:22 21
11 Ackland 73:18 22 27 Laycock 63:54 22

Table 4 ranks the players average team phase relative to TOG. Notably, the two ruckmen for Essendon
appear at opposite ends of the table. Hille was the dominate ruckmen for the team, and clearly performed
better than his teammate, who performed poorly given relatively the same opportunity.
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Transaction data is generated in ProEdge
(Pro-Stats) a statistical package
developed by ProWess Sports

&) Pro-Stats
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Games are “called” live and
post-match
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B. Gibbs D. Hille
K. Simpson | R. Dyson
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bench constantly updates in real time

2007 AFL Season: Round 3 Carlton vs Essendon
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Figure 1: Algorithm of the procedures involved in generating the interactive relative phase plot
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Figure 1 above represents the complicated algorithm required to generate the interactive relative phase
plot. Although the transaction data is collected post-match the variables which are extracted are only those
which match the real footy website live statistics. Therefore the model can theoretically be run live. This
game contained many swings, with the eventual winner, Carlton, predicted to win even when they were
behind.

CONCLUSION

The final product delivers both a single statistical measure and graphical representation of the state of the
game at any point in time from a team perspective. By incorporating interchange data the impact of each
player has on the system relative to time on ground is investigated. Applying these live measures during a
game will assist coaches in being able in select the players whom have the biggest impact relative to time on
ground. The statistical measures used are widely interpretable for use by coaches and the general football
public alike.

Acknowledgements

The authors would like to thank ProWess Sports (http://www.prowess.com.au) for their outstanding support,
including the use of their data on this project, helpful feedback on the process, and continued support of the
RMIT Sports Statistics Research Group.

References

Bedford, A. and Baglin, J. (2008) Evaluating an ice hockey team’s performance using interactive phases of
play. To appear in the IMA Journal of Management Mathematics.

Clarke, S.R. (1993) Computer forecasting of Australian rules football for a daily newspaper. Journal of the
Operational Research Society, 44 (8): 753-759.

Franks, I. M. and Miller, G. (1991) Training coaches to observe and remember. Journal of Sports Sciences,
9: 285-297.

Franks, I. M. and Miller, G. (1986) Eyewitness testimony in sport. Journal of Sport Behaviour, 9: 38-45.

Kelso, J. A. S. (1984) Phase transitions and critical behavior in human bimanual coordination. American
Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 15: R1000-R1004.

Lames, M. (2006) Modelling the interaction in game sports - Relative phase and moving correlations.
Proceedings of the 8" Australasian Conference on Mathematics and Computers in Sport. 29-34.

McGarry, T., Khan, M. A. and Franks, I. M. (1999) On the presence and absence of behavioural traits in
sport: An example from championship squash match-play. Journal of Sport Sciences, 17: 297-311.

McGarry, T., Anderson, D. L., Wallace, S. A., Hughes, M. D. and Franks, I. M. (2002) Sport competition as a
dynamical self-organizing system. Journal of Sport Sciences, 20: 771-781.

Palut, Y. and Zanone, P.-G. (2005) A dynamical analysis of tennis: Concepts and data. Journal of Sport
Sciences, 23: 1021-1032.

Stewart, F. M., Mitchell, H. and Stavros, C. (2007) ‘Moneyball’ applied: Econometrics and the identification
and recruitment of elite Australian footballers. Journal of Sports Economics, 2: 231-248.

114



MULTI-LEVEL MODELS FOR PLAYER PERFORMANCE IN AFL
FOOTBALL

Meyer, Denny and Jackson, Karl
Swinburne University of Technology, Melbourne, VIC, Australia

Paper Submitted for Review: 25 March 2008
Accepted Without Revision

Abstract. It is difficult to measure the performance of individual players in the case of complex team
sports such as AFL football. Methods based on the number and types of possessions and disposals fail to
account for the effects of position and the performance of teammates and opposition players. In this paper
the equity approach of O’Shaughnessy (2006) is used in an attempt to overcome this problem. In the
context of spatial maps, O’Shaughnessy (2006) suggested that the equity of each possession could be
measured by following each chain of play through to the next score. In this paper equity values similar to
those developed by O’Shaughnessy will be used to measure player performance for each season. This is
done by accumulating the total equity over all possessions and then standardising using time on field for
each player. This produces a performance measure for each player in each season which can be used to
assess the importance of draft pick, age and height for each position while controlling for the ability of
each player’s team. This is done by using a two-level multilevel model with player characteristics at level
1 and team characteristics at level 2. The results show that, for all but one of the positions considered,
team performance has a positive relationship with player performance. Greater height was a disadvantage
only for Key Defenders while greater age was an advantage for all positions except Key Defenders. Low
draft picks performed particularly well in the Key Forward, Ruckmen and Midfielder positions. These
results have important implications for player selection.

Keywords: draft pick, individual performance, team performance, multi-level models

INTRODUCTION

While it is team performance that is of most interest in AFL football, the performance of individual
players is also of great importance. For instance Chu (2000) has reported that “social loafing”, the term used
to describe decreased expenditure on group tasks (Greenberg et al., 1997), is reduced when individual
performance is measured. Bracewell (2003) regards ability as synonymous with performance, suggesting that
performance can be quantified using a player’s technical skill set. Other authors such as McKenna et al.
(1987) and Deutsch et al. (1999) have suggested that performance of individuals be measured in terms of
physical effort or work rate rather than skills. However, all of these approaches over-simplify player
performance in the case of complex team sports such as AFL football where, according to Salmella and
Regnier (1983), “mini-performances must be conceived of within a team context, considered against the
strengths and weaknesses of other team mates and the demands of each position™. This paper analyses player
performance within this wider context.

O’Shaughnessy (2006) has suggested a tool which can be used for this purpose. This tool uses the equity
of each possession which is measured by following each chain of play through to the next score. This
approach appears to address the above problems, in that it measures the effect of location, pressure and skill
for each possession. O’Shaughnessy used these equity values to develop equity contour maps for AFL
football for various activities. In a parallel paper, Jackson (2008) uses equity values similar to those
developed by O’Shaughnessy to produce a player rating system. In this paper, a variation to the rating system
introduced in Jackson (2008), the equity per minute, will be used to measure player performance for each
season. Equity per minute is calculated by accumulating the equity over all possessions and then
standardising using time on field for each player.

The purpose of this paper is to determine the effects of player characteristics and team performance on
this equity performance measure. Using four seasons of AFL data, supplied by Champion Data, regression
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and multi-level models have been used for this purpose. There are two levels of data. At the first level we
have the player data for each season: the player’s age, height, his position and, in the case of drafted players,
draft pick number. At the second level there is data for each team’s performance, including the average
points scored per match for each season.

This paper provides useful information for teams because it will determine the importance of the draft
pick for player success, while indicating the importance of player height and age for each position. Most
importantly it will test whether these effects are moderated by team performance; for example is height more
important in stronger teams. It is expected that the effect of height on player performance will depend on
position. However, it is also expected that for all positions older players and lower draft picks will have
better performance. In addition it is expected that players that belong to better teams will show better
individual performance in any season.

METHODOLOGY

The AFL data was supplied by Champion data in three files; demographic player data for players
including position, age, height, type of draft and draft number in the case of the National Draft; total equity
for each player in each season as well as the total time on field; match results including scores for home and
away teams in each season.

As mentioned above, the equity values used in this paper were calculated as described in Jackson (2008).
Possessions were split into four phases (set, uncontested, loose & hard) and equity values were calculated as
the average scoreboard value of each phase of possession at each location across the entire AFL ground. By
combining these equity values with performance statistics recorded by Champion Data, an equity rating
system was established. This equity rating is a measure of the scoreboard contribution of individual players
within a game, which rewards players that consistently improve the position of their team rather than players
that build up large numbers of cheap possessions.

After combining the player data for demographics and equity, descriptive analyses were conducted on
the data, with an ANOVA analysis showing significant differences in equity levels depending on position.
Linear regression analyses were then carried out separately for each position in order to test whether
performance relationships were linear and whether error distributions were homogeneous with normal
distributions. These analyses were carried out considering only players who were selected in the National
Draft. Partial regression plots which control for the effect of other predictor variables were used to assess the
linearity assumption, while residual plots and residual statistics were used to assess the distributional
assumptions for the multi-level models.

However, the study obviously involves data for two levels, a player level (level 1 or individual level) and
a team level (level 2 or group level). In past studies, the most common approach for the statistical analysis of
multilevel data was to disaggregate the data to the individual level, thus treating individuals without
reference to their group. Such conventional regression methods tend to focus too much on the individual and
too little on the social or institutional contexts in which individuals are located. Multilevel models make it
possible to analyse the levels of these structures simultaneously, so consideration about the appropriate level
of analysis becomes redundant (Plewis, 1998). Multilevel modelling is a relatively new data analysis
technique, in that it has been developed only over the past ten years. As mentioned in Heck and Thomas
(2000), although there are numerous books to help in understanding univariate and multivariate data analytic
methods using conventional methods of analysis, there are very few books that have included an
understanding of multilevel analytic techniques. Similarly, these techniques are not generally available in
commonly used statistical software packages.

In multilevel modelling we want to know how a number of level 1 and level 2 variables affect a
particular outcome variable. The aim of the analysis is to determine the direct effect of the individual and
group level explanatory variables, and to determine if the explanatory variables at level 2 serve as
moderators of the level 1 relationships (Hox, 1995). Hence, by focusing attention on the levels of the
hierarchy in the population, multilevel modelling enables a better understanding of where and how effects
are occurring (Browne et al., 2001). Through examining the variation in outcomes that exists at different
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levels, more refined theories can be developed about how explanatory variables at each level contribute to
outcomes.

An analysis that models the way in which players are grouped within teams in any season has a number
of advantages. As Goldstein (1995) stated, it enables data analysis to obtain statistically efficient estimates of
regression coefficients. By using the clustering information it provides correct standard errors, confidence
intervals and significant tests which will generally be more conservative than the traditional significance
tests, which are obtained by ignoring the presence of clustering and assuming that observations at level 1 are
independent of other level 2 or contextual factors.

The 2-level models that will be investigated for each position are shown below with Py indicating the
performance for the ith player in the jth team/season. The Greek letters indicate model parameters and it is
assumed that the error terms, e; and u; are random but normally distributed with constant variance. The
variables in this model are described in Table 1.

P, =By, + B, ;DRAFT, + B, AGE, + p, HEIGHT, +¢;
,B,g. =¥t YuSCORE ; +u,

for k=0, 1, 2 and 3.

Table 1: Variables for Multi-Level Model

Construct Variable Measure

Player Performance P Total equity for season divided by minutes on field

Draft Pick DRAFT Draft Number

Age AGE Years

Height HEIGHT Centimetres

Average team score SCORE Average team score for season after subtracting the mean
match score for all teams in all seasons

Position POSITION Key and General Forward, Ruckman, Key and General
Defender, Midfielder

Draft number is only available for player selection based on the national draft and it is expected that the
model will change depending on position. For this reason the analysis has been performed separately for
each position considering only players who were selected through the national draft. Only in the case of
Utility players was no analysis performed on account of the small number of players (24 Tall Utility players
and 16 General Utility players).

RESULTS
Descriptive Statistics

The data was collected by Champion Data, the official provider of AFL statistics, for the 2004-2007
seasons. However, only players who took part in the 2007 season were included in the analysis. As a result
players in the 2004 and 2005 seasons were under-represented in the data (19% and 23% respectively) while
the 2006 and 2007 seasons were over-represented (27% and 31%).

Table 2 demonstrates the physical requirements of the various positions only for the 62.4% of players
who were selected through the national draft. In the case of height there was a significant difference between
the positions (F(5,376) = 142.598, p<.001). In addition there was a significant difference between positions
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for equity score per minute on field (F(5,780) = 25.309, p<.001), with Key Defenders performing
significantly worse than other positions and Forwards and Midfielders performing significantly better than
the other positions. This is consistent with the results presented in Jackson (2008), where it was found that
players playing in the forward line were significantly advantaged by the equity ratings. The height
measurements relate to levels at the end of the 2007 season but the age variable was corrected for each
season.

Table 2: National Draft Player Statistics 2004-2007 for 2007 players only

Number Mean Player Characteristics (SD)
Players | Seasons | Height Age Draft Equity by

Position (cm) (yrs) | Number Season

General Defence 49 107 187.04 22.16 34.00 .08 (.03)
(4.40) (2.91) (20.61)

General Forward 49 98 183.08 22.47 33.29 .11 (.03)
(4.31) (3.59) (18.91)

Key Defence 38 76 193.08 22.84 35.18 .07 (.02)
(2.38) (3.93) (20.04)

Key Forward 43 77 193.86 22.30 30.26 .10 (.04)
(3.14) (3.64) (22.74)

Midfielder 153 379 183.62 23.09 30.38 .10 (.03)
. . (4.23) (23.62) | (21.42)

Ruckman 50 49 197.80 21.87 30.90 .08 (.03)
(4.19) (2.80) (22.56)

The data is most rich for midfielders. There were 153 Mid-fielders playing in an average of 2.54 seasons
during the period 2004 to 2007. As Table 2 shows, the average height of these players was 183.62cm with an
average age of 23.09 years and an average draft number of 30.38. For these players Figure 1 suggests that the
distribution of equity per minute in any season was roughly normally distributed with a mean value of 0.10
equity points per minute and a standard distribution of 0.03 equity points per minute. Similarly shaped
distributions were obtained for the other positions.
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Figure 1: Distribution of Equity per Minute for Drafted Mid-Fielders
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Regression Analysis

An initial regression analysis was performed for each position, identifying significant predictors in terms
of height, age and Draft Number while ignoring the clustering of players within teams in any season. The
purpose of this analysis was to identify outliers and to test the assumption of linearity and normality using
appropriate plots.

Table 3: Summary of Regression Analyses for Individual Performance (Equity Per Minute)
Significant partial correlations (P.C.) (** p<.001, * p<.05)

Position Midfielders g:lfl:;zi S::::;L ]I§:¥ence Key Forward | Ruckmen
Outliers Deleted 0 0 2 1 2 2
R-Square (%) 7.9 25.2 2255 8.2 344 12.1
Height P.C. -014 -.09 -113 -282* | .044 -.139
Age P.C. 259 ** 469 ** | 466 ** | -.085 575 ** 262
Draft Number P.C. | -.152** -134 -.109 .105 -271*% -.307*

These results in Table 3 suggest that shorter Key Defenders have an advantage while older Key
Defenders do not. The age coefficient for Ruckmen was not quite significant (p = .082). Lower draft picks
appear to perform particularly well in the position of Midfielder, Key Forward or Ruckman. However, the
probable nesting of player performance within teams within any season made the assumption of residual
independence untenable in the above regression analyses. This analysis has merely served to justify the
linear and normality assumptions of the following multi-level analysis while identifying outliers for deletion
purposes.

Multi-Level Models

In addition to the advantages described above, the Multi-Level Models allow a measure of team
performance to be included as a predictor of player performance. The measure of team performance used in
Table 4 is the average match score for a team in any season after subtracting the mean score for all teams in
all seasons. A positive score means that the team has produced an above average performance in the season
while a negative score means that the team has produced a below average performance in the season.

Table 4 shows the results when the Multi-Level Model described above is fitted separately for each
position. It was found that although team performance, as measured by average match score, did have an
impact on player performance for all but Ruckmen, the effects of height, age and draft number were not

moderated by team performance. For none of these variables did the coefficient ( 3, ) depend on the Score

variable.
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Table 4: Summary of Multi-Level Models for Individual Performance (Equity Per Minute)
(** p<.001, * p<.06)

Position Midfielders | General General Key Key Ruckmen
Defence Forward Defence Forward
Coefficients*100
Intercept 8.9952 9.3736 10.9754 66.7048* -3.7924 34.3253
Score 0773** .0665** 1190** .0653* .0778* -.0085
Height -.0269 -.0688 -.0529 -.3048* 0124 -.1762
Age 27T1%* 5323 %* A4307** -.0655 .5320** A4575*
Draft Number -.0217* -.0203 -.0076 0135 -.0282* -.0402*

The Multi-Level Model results were very similar to those obtained from the regression analyses. Age
had a significant positive impact on player performance for all positions except Key Defenders. Also, as
found in the regression analysis, height had a significant impact only in the case of Key Defenders. As
before, it was found that draft number had a significant impact in the case of Midfielders, Key Forwards and
Ruckmen.

DISCUSSION

Player performance differs significantly between positions, suggesting that the equity measure used in
this study is not transferable between positions. In particular, players in the Key Defence position perform
significantly worse than other positions according to this measure while Forwards and Midfielders perform
significantly better than the other positions. Because of the differences between the distributions of the
explanatory variables and the equity ratings between positions, analysis had to be performed separately for
each position.

As expected it was found that player performance was better in the case of better teams. Only in the case
of Ruckmen was this result found to be non-significant. Key defensive players are unique in that age is not
an advantage for these players while being short is a decided advantage. It appears that low draft players are
particularly important for the positions of Midfielder, Key Forward and Ruckmen. This is an expected result,
since the better players that are nominated for a given draft are taken early, and hence have a low draft
number.

CONCLUSION

The results suggest that teams should prioritise draft picks in the case of Midfielders, Key Forwards and
Ruckmen. Having more talented players in these positions appears to be more important than in the case of
general forwards, general defenders and key defenders. For key defensive players, it seems as though shorter
players perform the best in equity per minute. It is expected that shorter players possess more speed than
taller players, which may help to explain how shorter key defenders are outperforming taller players in the
same position.

The results suggest interesting strategies in terms of the career development of players. Older players
outperform younger players in all but one position. This is not unexpected, since it often takes several
seasons for younger players to mature into dominant footballers. Seldom does a first or second year player
dominate in his given position.

The under-representation of 2004 and 2005 players is a limitation of the above analysis. It means that
there is probably an under-representation of players who withdrew from the AFL competition at an early age
and it is difficult to predict what effect this would have had on the results.

Finally the equity measure used in this analysis is regarded as only a preliminary measure by Jackson
(2008). The results of this paper confirm that the equity measure considered in this paper is not fair to all
positions. This measure needs to be modified in order to take into account the opportunity offered by each
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position. Once this has been done it will be appropriate for the current multi-level analysis to be repeated, in
order to confirm the variation in performance effects that was observed across positions in this analysis.
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Abstract. This study outlines univariate data transformation methods designed to force a near-normal
distribution on the 2007 Australian Football League so as to identify players who perform consistently
well. Analysing 7,700 individual player cases in the 2007 AFL season, and a selection of performance
variables (kicks, handballs etc), a more robust application than simple player ‘averages’ is developed. The
consistency statistic, a variation on the Coefficient of Variation, reveals the players whose round-by-
round performances vary the least from a personal and league standard while favouring players who have
played the majority of games in the chosen measurement period. In realising each player’s standard, a
“time-on-ground” variable is introduced to estimate a player’s final match performance should they be
absent from the match at any stage. Incorporating a log transformation, this variable rewards strong
performance in partial matches whilst leaving poor performance relatively unchanged. An initial finding
is the performance variables (supplied by ProWess data) commonly possess a right-skewed distribution
implying any performance much less than average is unacceptable. Box-Cox power transformations are
separately applied to the time-on-ground transformed performance data to create an approximately
normal distribution, an assumption for unbiased use of the consistency statistic. The intimate relationship
between these two transformations will be detailed in this paper with the accompanying results. Player
performance consistency becomes highly regarded from a coaching perspective, particularly for team
selection and player “match-ups”. Player consistency also aids in player selection for participants in
fantasy leagues. It is perceived that this model will translate simply to other team sports.

Keywords: Box-Cox Power Transformations, Time-on-Ground Transformation, Consistency Measure

INTRODUCTION

Much like an investor expects consistent returns from his/her portfolio, so too does a sporting coach
expect consistent returns from his/her “investments”. Why is the issue of performance consistency so
important? Of fund management, Marquardt (2008) remarks the more regularly managers beat their peers
and their benchmarks, the greater the likelihood that skill, rather than luck, is driving their performance.
Furthermore, consistent performers give you more certainty over your money. It means the returns on your
investments are less volatile. Sporting coaches highly value consistency in their players’ performances in the
same way: “You can't let poor performance go unnoticed - even from a superstar. The same goes for good
performance - performance is all-important; that's what you need to respond to on a consistent basis” (Shula
and Blanchard, 1995).

This paper seeks to isolate consistently good performers in the 2007 AFL season (Australian rules
football’s premier competition) using equations derived from the coefficient of variation. Initially, univariate
data transformations designed to force a near-normal distribution are trialled. A major objective is to achieve
at least a symmetrical distribution from which to calculate the consistency measurements.

The first data transformation in the research recognises the inability of a team competitor to achieve at
least what is expected of him/her due to injury; a constant distortion in performance analysis. Using “time-
on-ground” data, it will be shown that a competitor who plays partial matches can have a final quantified
performance estimate based on the actual performance achieved to the moment of his/her removal from the
contest (James et al., 2005). The paper will establish the contribution to near-normality a “time-on-ground”
transformation contributes to the distribution of performances in the 2007 AFL season.
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The consistency equation incorporates a performance average across the league. A proven right-skewed
distribution of AFL performance variables forces the analysis to focus on methods of achieving symmetry in
the data if the mean and variability (known, not being inferred) are to be used in non-biased measurement.
With this knowledge, Box-Cox (1964) transformations are applied to the time-on-ground transformed AFL
performance distribution to remedy skewness and kurtosis. As a result, it will be proven that competitors
located around the mean of the Box-Cox transformed data set have a greater probability of appearing in
higher order consistency than if the data were left untransformed. The pre and post-transformation
performance data distributions will be evaluated by observing histograms.

Much interest surrounds selecting consistent performers in fantasy sport leagues, or “dream teams”.
Waldman (2005) believes a fantasy team of players performing consistently at a desired level is more
valuable than higher scoring, but more erratic players. This paper considers two types of consistency
measure — a personal and league consistency, based on equations derived from the coefficient of variation. It
is important to establish that the consistency measure will only return logical results when applied to an
appropriate position-based performance measure in the notational analysis. For example, it is worthless
measuring consistency in goal kicking for a defender, given that it is a defender’s role to prevent goals.
Another consideration is that the consistency measure is not necessarily identifying the “best” players in a
league, but rather those that display the least variability in their game-to-game performances.

The paper will conclude with a comparison of the most consistent players based on different orderings of
data transformations applied to the different consistency measures. The benefits to coaching, as well as
correlation between the consistency results and club champion awards will be discussed to ascertain the true
worth of this analysis.

METHOD AND RESULTS

Hughes and Bartlett (2002) identify performance as any combination of quantifiable performance
variables within a match that constitute effective team play. Moreover, they discuss the concept of notational
analysis, or the performance of individual team members in team sports based on “open skills™ (kicks, goals
etc). Some fantasy sport competitions or “dream teams” employ simple algebraic equations (see (1)) to
determine player j’s performance, Y; after each match, with the sum of each performance value X; recorded
for each player in a match, assigned an arbitrary coefficient.

Yi=3Xi t2Xp+3Xnt6 X+ Xp+4 X+ Xno+ X =3 X1 (1)

where: k = kick, 4 = handball, m = mark, g = goal, b = behind, ¢ = tackle, o = hit-out, /= free-for, fa = free-against

Although this formula is proven to bias certain positional plays (Sargent & Bedford, 2007), in the
interests of simplicity the same performance measure is to be employed to demonstrate the benefits of data
transformations, before calculating consistency in the latter stages of this work. See James et al. (2005) for
research on performance indicators for specific positions in rugby union.

Figure 2A displays the untransformed, standardised performance for each player case with #=0 and o=1,
by (1). The initial distribution is right-skewed (0.502 by (9)) with negligible kurtosis (-.012 by (10)). Before
calculating consistency statistics for AFL players, this paper will discuss in detail the necessary
transformations found to force a symmetrical and hence nearer-normal distribution on the player
performance data in Figure 2A. All calculations have been performed using SPSS, except when optimising
log likelihood functions for Box-Cox transformations, where a script exports the transformed data to EXCEL
(Solver) then back to SPSS for consistency measurement.

Time-on-ground transformation

In many team sports, a competitor faces the reality of not realising a full game due to injury, substitution
or send-off, hence depriving him or her the opportunity to achieve at least an expected quantifiable
performance. For the purposes of this research, it is deemed unfair that a player’s consistency should be
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jeopardized for playing a partial match due to injury sustained in that match. James et al. (2005) describe
data transformations to account for this shortcoming in their performance measurements in rugby union.

The exponential nature of the transformation (see Figure 1) rewards team competitors who have
performed well in a partial match, while leaving poor performances in partial matches relatively unchanged.
Assuming 125 minutes in a game of AFL (four 30 minute quarters plus time on), each player’s performance
measurement could be expressed as a function of time spent on the ground.

A - x(ﬁj @)

y

where: x; = frequency of performance variable x in game #; y = time on ground (minutes)

This provides an acceptable transformation, however the exponential nature of the function (see Figure
1) dictates that one performance point in one minute of playing time will be extended to 125 for the match.
This is an overly generous forecast and is improved by the use of (3).

A2=x.-( ”—S]Hlog.o‘z—sjﬂ] 3)
y y

Given that taking the square root and/or logarithm of cases in an asymmetric data set are basic but
(sometimes) effective near-normal transformation methods (Chinn, 1996), it seems logical that this method
be preferred to (2). In addition, (3) yields a far more realistic estimation of final performance in a partial
match — although a one minute-one performance point match is rare, a forecast score of 35 by (3) is prudent.
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Figure 1: Time-on-ground transformation

It will now be shown that when (3) transformed data is transformed again using Box-Cox methods,
symmetry is achieved in the performance data distribution.

Transformations to approximate normality

Right-skewed distributions are certainly not uncommon among sporting performance variables. Poisson
techniques (commonly applied to other right-skewed data such as waiting times) have been utilised in
modeling the distribution of goals scored by competing teams (Karlis, 2003). Commonly employed when
desiring a normally distributed sample on which to perform parametric tests, non-linear data transformations,
such as power transformations are extremely effective in removing asymmetry from data sets (Smith, 1998).
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In this research, data transformations are to be applied to the population (league) data to force an
approximately normal distribution, from which to take player samples.

What are the parametric benefits of a symmetrical distribution? A successful transformation of a skewed
dataset to a reasonably symmetrical one implies a central measure, such as a mean or median becomes more
suitable for parametric estimation (Smith, 1998). Further, we note from classic normal distribution theory
that a sample from a normally distributed population is approximately normal. Given the consistency
measures employed later in this paper are developed from the ratio of the second (o) to the first (#) moments
of the normal distribution, it is appropriate that each statistic be derived from at least an approximately
normal data set.

The first transformation discussed in this research was developed by Tukey (1957) who introduced a
power transformation of the form:
A
X!
)-{

log x; (A=0)

(1 #0)

@

Box-Cox (1964) developed maximum-likelihood methods in data transformations. The foremost Box-Cox
power transformation is of the form:

- [xt -1
*(A)=1"2 (4#0) 5)
log X; (,1 = 0)

The Box-Cox shifted power transformation becomes:

(x,. +4, )/1 -1
x(4)= A (4#0) (6)
log(x, + 4,) (L=0)

Transformation (4) and (5) requires that x > 0 and (6) that x > - A4, . Given the vector of performance data

observations, x; = x;,..,x, the power A in (5) can be selected so that it maximizes the logarithm of the
likelihood function (7) (Chinn, 1996).

flx,A)=— g log{i (x,(4)-x(2)y } (- l)gl log(x,)

i1 n
M
where ¥(1)= le,. () is the arithmetic mean of the transformed data.
i=1
When considering the shifted transformation (6), the second term in (7) becomes:
(A-1)) log(x, +4,) (8)

i=1
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Rigby and Stasinopoulos (2004) suggest the shifting parameter, A, can be optimised so as to minimise

kurtosis, however its effect on this data was negligible, and the resulting distribution too similar to (5) for
further consideration in consistency measurement. By way of (5) the resulting distribution (see Figure 2d) is
symmetrical but the density around the mean suggests kurtosis remains an issue. Applying (10) to the TB
data, a kurtosis of -0.242 supports this.
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Figure 2: Histograms of transformations with skewness and kurtosis coefficients

From Figure 2, the untransformed standardised performance data (A) possesses a right skew without
kurtosis. Running a Box-Cox power transformation (5) treats skewness but introduces kurtosis (B); the right
half of the distribution is denser than the left. Applying (3) to the (5) transformed data treats kurtosis but
reintroduces skewness (C); (D) is the standard normal distribution of performance data transformed by (3)
then (5). Skewness is virtually non-existent, yet kurtosis is still present, however the Shapiro-Wilk test
proves that (D) is the closest to normality (p = 0.046).
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Consistency measurement

Having performed important transformations on the asymmetric performance data, it is now possible to
take a series of non-random samples (each player’s season performances) from the population (league) to
arrive at consistency measures for each player. Three consistency measures are considered.

o
. ation: _o 1
Coefficient of Variation cv.” 3 (11)

CV has been incorporated in the past to measure performance consistency in sport such as basketball
(based on points scored) (Manley, 1988). The limitation associated with CV is the reality of players who
have played two to three games appearing in the top ranks of consistency. Based on average performance,
two to three games is not sufficient proof a competitor is a consistently good performer.

. o
Personal consistency measure: PCM, =— (12)
nx

The PCM formula, given by (12), discounts players with limited matches in a season by dividing
performance standard deviation by the number of games played in the season, n. Concurrently, the method
attracts higher averaging players into the top rankings.

Observing variability in week-to-week performance, coaches and fantasy league participants are keen to
know how consistently their players are performing at least at a desired level (Waldman 2005). The desired
level is dependent on several factors governing each player’s ability to perform, but for the purposes of this
research, an expected level will be defined as the average quantifiable performance across the 2007 AFL
season, as given by u. LCM, as given in (13), overcomes a problem defined by Waldman (2005) of simple
standard deviations penalizing players who consistently and erratically score over the established norm (see
Table 1) by only measuring consistency in performance above the league average.

League consistency measure:

LCM, =288 (x5 (13)
Z(xi —/1)

i=1

where: O = standard deviation of player &’s performances, X = mean of player k’s performances, 4 = average league
performance, x;= player k performance in round i, » = number of games played by player k

Bivariate correlation calculated between all three consistency measures (transformed and untransformed)
and club champion awards (1 to 10 voting system where 1 is best) are designed to give an insight into the
predictive power of consistency. It should immediately be noted that transformed data consistency measures
(denoted by subscript ¢ in Table 1) each have a higher correlation than their untransformed equivalent. The
top half of Table 1 shows top ranked players by the LCM, method. Significant correlation (at a=0.10)
between these consistencies and club champion votes show this method to be the best predictor of player
awards out of all methods trialed. This is expected given the consistency is only calculated on player’s
games which exceed the league average. Note its impact for Harvey (club champion for Kangaroos): CV,
ranks him at 236, while LCM, ranks him at 6.

The bottom half of the table ranks players by PCM,. With a lower consistency-award correlation and
average score, it is isolating players, who although may not all be recognized as the best performers, are
showing the least variability around their expected personal performance from week to week. This
information is potentially of great interest to coaching staff who want to monitor their “up-and-coming”
players. Players who achieve top ten rankings in PCM, and LCM,;, (Bartel, Tuck and Foley) should be of great
interest to coaches and fantasy league participants, given the chosen performance variable (1). These players
are consistently achieving their personal and league expectations, benefiting from skill rather than luck.
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Table 1: Ranked consistent players by LCM (top half) and PCM (bottom half) where ¢ denotes transformed data

Player Games Score CVt PCM¢ LCM¢ CV PCM LCM
Corey 21 109.29 96 41 1 28 10 1
O'Bree 21 82.52 94 38 2 84 43 62
Thompson (Ad) 22 103.14 86 24 3 33 4 3
Bartel 20 120.3 35 10 4 66 45 2
McDonald (Me) 21 98.38 71 25 5 39 15 16
Harvey (Ka) 22 99.18 236 97 6 143 57 8
Tuck 22 90.59 44 4 7 40 8 35
Lewis 22 99.55 150 54 8 63 22 14
Foley 22 91.45 33 2 9 41 9 30
Burns 22 87.05 92 27 10 71 26 24
Johnson (WB) 21 103.81 19 1 27 16 1 6
Foley 22 91.45 33 2 9 41 9 30
Van Berlo 22 85.91 37 3 18 57 19 61
Tuck 22 90.59 44 4 7 40 8 35
Akermanis 19 76.16 31 5 81 18 5 121
Milburn 21 87.14 39 6 88 19 2 46
Watson 19 88.47 32 7 11 44 34 106
Stiller 22 87.5 48 8 73 70 25 93
Crawford 21 94.19 42 9 13 23 3 18
Bartel 20 - 120.3 35 10 4 66 45 2
Correlation 0.134 0.219 0.226 0.065 0.196 0.220
CONCLUSION

Box-Cox transformation methods are successful in forcing approximate normality on univariate team
sport performance data. It was shown that when following a logarithmic “time-on-ground” transformation
(James et al., 2005), a Box-Cox power transformation (Box & Cox 1964) is most effective in forcing an
approximately normal distribution on league performance data with known parameters in preparation for
consistency measurement. When calculated on the approximately normally distributed league data, the
consistency measurements gave a broader insight into the players most consistently reaching a desired level
from week-to-week. The coefficient of variation method too easily accounted for players who had played
limited games, hence does not provide enough evidence of consistency. The PCM method gave a good
indication of players who weren’t necessarily the highest averaging players in the league, but were
consistently achieving their own expected performance on a consistent basis. The LCM method also proved
to have the highest correlation with player “best and fairest” awards in 2007, hence promoting the predictive
capabilities of the model. These findings provide both coaches and fans a far more accurate rating of ongoing
consistency that those reported, be it through simple averages, or even more advanced time adjusted data.
With these findings, we aim to further our analysis on a player ratings model by incorporating the
transformations outlined in this work.
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Abstract. A Markov Chain model is applied to volleyball to calculate win probabilities and mean
lengths with the associated variances, conditional on both the scoreboard and the server. A feature of this
model is that it predicts outcomes conditional on both the scoreboard and the serving team. The inclusion
of the serving team in the event space is an essential requirement of this model, and arises from the rule in
volleyball that the winner of each point in a set must serve on the following point. The average
probability of a team winning a point on serve is less than 0.5, and so rotation of serve is commonplace.
The key to the analysis of an evenly contested set is the observation that, from the situation where the
scores are level (after at least 46 points have been played), the team that wins the set must eventually win
two successive points. If the two points are shared then the score is level once again, although a rotation
of server has occurred. This scoring structure, combined with the method of rotating the serve,
distinguishes volleyball from other racket sports such as tennis, squash, badminton and table tennis.
Results from the model indicate that it is advantageous to be the receiver on the opening point of a set and
the team that wins the toss at the start of the fifth set (if the set score reaches 2-all), has an advantage for
the remainder of the match. However, due to the rotation of serve after each set, there is no advantage for
either side in being server or receiver at the start of the match.

Keywords: volleyball, Markov Chain model, scoring systems

INTRODUCTION

Markov Chain models are widely used in modelling sporting outcomes. Kemeny and Snell (1960)
recognized that tennis could be modelled by Markov Chains. Tennis has four levels (point, game, set, match)
and the time to play the match is not fixed, but rather depends on a player winning 2 or 3 sets. Other racket
sports contain a similar structure to tennis and Markov Chain models could be developed to model these
sports. For example, Clarke and Norman (1979) use Markov Chain models to compare North American and
International squash scoring systems.

A Markov chain model can be applied to volleyball in a similar approach to racket sports. In volleyball,
scoring consists of three levels: point, sets and match. A coin is tossed to determine the first serve of a
match. At the start of each set, the team that was receiving first in the previous set becomes the server for
the next set. If the set score reaches 2-all, then the toss of a coin decides the server for the start of the final
set. Each team can win a point while either serving or receiving. The first team to win three sets wins the
match. Each set is played as a 25-point set with the exception that after the set score reaches 2-all, the final
set is played as a 15-point set. If the score reaches 24-all in a 25-point set, then play continues indefinitely
until one team has obtained a two point lead. Similarly, if the score reaches 14-all in a 15-point set then the
play continues indefinitely until one team has obtained a two point lead.

In this paper, a Markov Chain model is applied to volleyball to predict outcomes conditional on both the
scoreboard and the server. The inclusion of the server in the event space is an essential feature of the model
for volleyball because of the rule on serving in this sport, and distinguishes it from models for other racket
sports such as tennis, squash, badminton and table tennis.
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PROBABILITY OF WINNING
Point

Volleyball has the added complication of having 6 players that make up a team, rather than just the one
player each side as occurs in racket sports. To simplify the analysis we will assume throughout that the
probabilities of winning a point by each player in a team on their respective serves are identical and constant,
irrespective of the score. Therefore, the model consists of two parameters, the probabilities of team A and
team B winning a point on their respective serves. The probabilities of winning a point on serve are
represented as follows:

A winning point | B winning point
A serving | pa ga=1-pa
B serving gqs=1- ps Ps
Set

The conditional probabilities of a team winning a set from point score (a, b) in a 25-point set are

represented as follows:

A winning set

B winning set

A serving next | P(A | A,ab) P(B | A,a,b)=1-P(A | Aab)
B serving next | P(A | B,a,b) P(B | B,a,b)=1- P(A | B,a,b)

The conditional probabilities of a team winning a set from point score (a, b) in a 15-point set are

represented as follows:

A winning set

B winning set

A serving next

P*(A | A,ab)

P*(B | A,a,b)=1- P*(A | Aab)

B serving next

P*(A |B,a,b)

P*(B | B,a,b)=1- P*(A | B,a,b)

We will adopt a similar notation for all other occasions where we need to distinguish between a 25-point
set and a 15-pont set without further comment.

Score(a, b) >»| Score(at1,b)

A serving

B serving

Score(a, b) >| Score(a, bt+1)

Figure 1. One step transitions between states of play.

Figure 1 illustrates the one step transitions between the various states of play. We set up a Markov chain
model for the case of team A winning a 25-point set using backwards recurrence formulas, as follows:

P(A|Aab)=paP(A | Aa+l,b)+ qa P(A | B,ab+1)
P(A | B,a,b) = ps P(A | B,a,b+1) + gz P(A | A,at1,b)

The boundary values are:
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P(A|Aab)=1 ifa=250<b<23
P(A|B,ab)=0 ifb=250<a<23

P(A | A,24,24) =p,*/ D

P(A | B,24,24) = ps qa (1+ paps - 4ags) / D

where D =(1 - quB)2 -Pada PeOB

A method for determining the final boundary values, P(A|A,24,24) and P(A|B,24,24), is explained
below. It is however straight forward to check using the recurrence formulas and boundary conditions that

P(A | A,23,23) = P(A | A,24,24), and
P(A | B,23,23) = P(A | B,24,24).

Similar formulas can be developed for a 15-point set. In the case where A wins a 15-point set the
backwards recurrence formulas are

P*(A|A,ab) =paP*(A|Asa,+1,b)+ qa P*(A |B,abt1)
P*(A|B,ab) = psP*(A | B,a,bt1) + qg P*(A | Ajatl,b)

The boundary values are:

P*(A|Aab)=1 ifa=150<b<13

P*(A |B,a,b)=0 ifb=15,0<a<13

P*(A | A,24,24)=p,>/D

P*(A | B,24,24) = ps qs (1+ paps -qaqs) /D

The formulas to cover the cases where B wins the set are obvious.

Table 1 represents the probability of team A winning a 25-point and 15-point set for different values of
pa and pg from the start of the set. The average probability of winning points on serve in men’s volleyball is
about 0.25. Therefore the values of p, and pg were chosen to reflect this value. The results indicate that the
team receiving first has an advantage in winning the set. This is not an unexpected result, since the receiving
team has the first opportunity at an attack.

Table 1: The probability of team A winning a 25-point and 15-point set for different values of p, and pg from the start

of the set,
25-point set 15-point set
Pa, PB A serving B serving A serving B serving
0.30, 0.30 0.48 0.52 0.47 0.53
0.30,0.29 0.51 0.56 0.49 0.56
0.30, 0.25 0.63 0.69 0.59 0.66
0.25,0.25 0.47 0.53 0.46 0.54
0.25,0.24 0.50 0.57 0.48 0.57
0.20, 0.20 0.46 0.54 0.45 0.55
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MATCH

The probabilities of a team winning a 25-point set from its beginning are represented as follows:

A winning set B winning set
A serving first point of set | gaa =P(A | A,0,0) | gap=P(B|A,0,0)=1-gaa
B serving first point of set gea=P (A |B,0,0) | ggs =P(B|B,0,0)=1-gga

The conditional probabilities of a team winning a match from set score (c,d) are represented as follows:

A winning match | B winning match
A to serve first point of set G(A | Ac,d) GB|A,c,d)=1-G(A|A,c,d)
B to serve first point of set G(A | B,c,d) G(B | B,c,d)= 1 — G(A | B,c,d)
Toss to serve first point of set G(A | *,c,d) G(B | *,c,d)=1-G(A | *,c,d)

The boundary values for team A winning a match from set score (c, d) are given by

G(A|Acd)=1ifc=3,0<d<2
G(A |B,c,d)=0ifd=3,0<c<2

A toss for serve is required at the start of the match, and the serve rotates at the start of each subsequent
set unless the set score reaches 2-all, when another toss for serve is required. Thus when (c, d) = (0, 0) or
(c, d) = (2, 2) the formula for the toss is

G(A | *,c,d)=0.5*[G(A | A,c,d)+ G(A | B,c,d) ]

The recurrence formulas after the first toss, and before the fifth set are
G(A | A,c,d) = gaa G(A | B,ct+1,d)+ gap G(A | B,c,d+1)
G(A | B,c,d) = ggs G(A | A,c,d+1)+ gga G(A | A,ct1,d)

The recurrence formulas after the toss for the 15-point fifth set are
G(A | Ac,d) = g*sn G(A | B,c+1,d)+ g* a5 G(A | Bie,d+1)
G(A l B,C,d) = g*BB G(A I A,C,d+1)+ g*BA G(A I A’C+1’d)

However when (c,d) = (2, 1) or (c,d) = (1, 2) one of the possible outcomes at the end of the set is a level
score of 2 sets all, and recurrence formulas require modifications to allow for the toss.

G(A | A2,1) =gaa G(A | B,3,1)t gap G(A | *,2,2)
G(A | B,2,1) = ggs G(A | *,2,2)+ gga G(A | A,3,1)
G(A | A,1,2) = gaa G(A | *,2,2)+ gas G(B | B,1,3)
G(A |B,1,2) = ggs G(A | A,1,3)+ gpa G(A | ¥,2,2)
When the boundary conditions are applied we obtain the simplification:
G(A[*,2,2)=0.5*[g*aat+ 8*Bal

The formulas for the probabilities of team B winning a match are obvious. Table 2 represents the
probability of team A winning a match for different values of p, and pp from the start of the match. The
results indicate that there is no advantage in serving or receiving at the start of the match. At the start of the
fifth set, another coin toss is used to determine the serving team, and as given in Table 1, it is an advantage
for the remainder of the match to be receiving first in this final set.
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Table 2: The probability of team A winning a match for different values of p, and pg from the start of the match.

match
Pa> P8 A serving | B serving
0.30, 0.30 0.50 0.50
0.30,0.29 0.56 0.56
0.30, 0.25 0.77 0.77
0.25, 0.25 0.50 0.50
0.25,0.24 0.56 0.56
0.20, 0.20 0.50 0.50

Finding the boundary conditions at the end of a set

The key to determining boundary values such as P(A | A,24,24) and P(A | B,24,24) , is to observe that,
from the situation the scores are level when at least 46 points have been played, the team that wins the set
must eventually win two successive points. If the two successive points are shared then the score is level
once again, although a rotation of server may have taken place. Figure 2 illustrates the one step transitions
between the various states of play after the scores are level.

certaing
level advantage, level
CVCl A -
A serving
levelg levelg
B servin
- 8
advantagep
certaing

Figure 2: One step transitions between states of play, in a set after scores are level and when at least 46 points already
played.
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From the independence of the outcome of successive points we can calculate the two step transitions, and
use this to eliminate the advantage states from the diagram, as shown in Figure 3.

certaing
level, /> level,
A serving
levelg levelg
h .
\7‘ B serving
certaing

Figure 3: Two step transitions between states of play, in a set after scores are level and when at least 46 points already
played.

We consider the case of A winning the set after reaching various states. To do this we must set the
appropriate boundary conditions:

ca=P(A|A25,23)=P(A | B,25,23) =1,
and
cg=P(A | A,23,25) =P(A | B,23,25)=0.

To simplify the notation let
wa=P(A | A,24,24), and ws = P(A | B,24,24).

Since

wa=P(A | A23,23)=P(A | A24,24) {=P(A|A2525)=...... }
and

wp=P(A | B,23,23) =P(A | B,24,24) {=P(A|B,25,25)=...... }

we can use the backwards recurrence relations already given to obtain, after two steps
Wa = o’ Ca+ qads Wa +Pada Ws+ QA Ps Cs
W = QB PaCat PsdB WAt qaqs WB ™ Ps” CB

When the boundary conditions are taken into account these equations simplify to
Wa (1-qaqp) - pAqa wa = pA2
ws (1-qa Q) —Psqs WA= Pags

Solving this pair of simultaneous equations leads to
Wa=pa’/[(1 -qaqs)* - Paqa P5 qs] ,
Wp = Pa qs (14 paps - qaqs) /[(1 - qaqs)” - pPaqa Prqs]
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The same argument can be used to develop the boundary conditions for the case where team A wins a
15-point set, leading to identical results. Results for the cases where team B wins a set can be obtained by
symmetry, using similar arguments.

NUMBER OF POINTS PLAYED IN A SET

Mean number of points in a set

The mean number of points remaining in a 25-point set from point score (a, b) are represented as
follows:

A serving next M(Ala,b)
B serving next M(Bla,b)

The backwards recurrence formulas are as follows:
M(AlJa,b) = 1 + ps M(Ala+1,b)+ qs M(Bla,b+1)
M(BJa,b) = 1 + pg M(B|a,b+1) + qg M(Alat+1,b)

The boundary values are:
M(A|a,b)=0 ifa=25,0<b<23
M(BJa,b) =0 ifb=25,0<a<23
M(A[24,24) = 2[1 + pada- qaqsl/D
M(B24,24) = 2[1 + paq 5- 4aqal/D

where D= (1 - quB)2 - PAPBqaqB

Variance of the number of points in a set

The variance of the number of points remaining in a 25-point set from point score (a, b) are represented
as follows:

A serving next V(Ala,b)
B serving next V(Bla,b)

The backwards recurrence formulas are as follows:

V(Ala,b) = pa V(Ala+1,b)+ qa V(Bla,b+1) + pa qa [(M(Ala+1,b)+ M(Bla,b+1)]’
V(B|a,b) = pg V(BJa,b+1) + qg V(AJa+1,b) + psqs [M(B|a,b+1)+ M(A|a+1,b)]2

The boundary values are:
V(AJa,b) =0 ifa=25,0<b<23
V(Bla,b) =0 ifb=25,0<a<23
V(A|24,24)=4qa[patqst3papPsds-29a 132'pAzqu'PAPlqu;lB2 - PAQA§QB§ + PAngQAQB + QAEQB;]/ Di
V(B|24,24)=4qg[ps +qa+3paPsda-29a qs-P 9s-PAPBAa 98 - PB9a Qs + PaPs 9ads + qa s )/D

Similar recurrence formulas can be devised for the mean and variance of the number of points remaining
in a 15-point set and the mean and variance of the number of sets remaining in a match. Table 3 gives
numerical results of the number of points in a 25-point set for different values of p, and pg,
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Table 3: The mean and standard deviation of the number of points in a 25-point set for different values of p, and pg.

Mean points in 25-point set | Standard deviation of the number
of points in a 25-point set
Pa, P8 A serving | B serving A serving | B serving
0.30, 0.30 47.0 47.0 4.7 4.7
0.30,0.29 47.1 47.1 4.8 4.8
0.30, 0.25 47.2 47.0 5.0 5.0
0.25, 0.25 47.8 47.8 5.4 5.4
0.25,0.24 47.9 47.8 5.5 5.5
0.20, 0.20 48.9 48.9 6.7 6.7
CONCLUSIONS

This paper has demonstrated that the use of Markov chains can be used to model outcomes in volleyball
conditional on both the scoreboard and the server. Results from the model indicate that it is advantageous to
be the receiver on the opening point of a set and the team that wins the toss at the start of the fifth set (if the
set score reaches 2-all), has an advantage for the remainder of the match. However, due to the rotation of
serve after each set, there is no advantage for either side in being server or receiver at the start of the match.
Similar models could also be applied to beach volleyball, where the rotation of serve in beach volleyball is
the same as standard volleyball.
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Abstract. How an athlete trains is the most influential factor in the myriad of variables which
determine performance in endurance sports. The questions that face all coaches and athletes is how
should I train to: a) produce peak performance; and b) produce a peak when desired? This paper reviews
attempts to use mathematical models to quantify the relationship between training and performance. The
theoretical underpinnings of these models are identified, touching on exercise physiology and load
quantification techniques. The paper then identifies limitations to existing systems modelling approaches.
The four key limitations discussed are: that the input for the model is training load (none of the training
load quantification methods used in the literature accurately describe physiological load for the different
types of sessions a cyclist commonly undertakes); simplification of the model input (training load) into a
single variable limits the applicability of the model in the real world; that to estimate model parameters,
regular performance tests are required (this is not practical for professional cyclists); and the model
parameters need to be recalculated regularly, as an athlete's fitness changes. Possible techniques to
overcome the identified limitations are then discussed, focussing on the domain of professional cyclists.
The paper then discusses a number of different modelling techniques which may be applicable in this
domain. Consideration is given to the use of Artificial Neural Networks (ANNs) which have yielded
positive results in some studies, and to stochastic optimisation. The paper concludes with a suggested
approach to overcoming existing limitations with systems modelling techniques.

Keywords: Modelling, training load quantification, artificial neural network.

INTRODUCTION

Performance in endurance sports is determined by a myriad of factors, from physiological and
psychological parameters to technological and environmental factors. Extensive research effort has gone into
attempting to understand the factors that influence performance, and the relationships between them. The
consensus is that by understanding the factors that influence performance, these factors can then be
manipulated to produce peak performances when desired.

From the 1970’s onwards, numerous studies have focused on modelling physiological responses to
training input using linear mathematical concepts (Banister, Calvert, Savage & Bach, 1975; Banister, Carter
& Zarkadas, 1999; Busso, 2003; Busso, Carasso & Lacour, 1991).

There are currently a number of software tools available on the market (CyclingPeaks WKO+, RaceDay
Performance Predictor™), which calculate an arbitrary measure of training load to model training and
performance. These approaches follow on from the TRIMP (training impulse) method proposed by Bannister
and Calvert (1980).

Linear modelling approaches have limitations in describing the relationship between training inputs and
response, as the response to a given input will change over time. Some more recent researchers have looked
at using non-linear Artificial Intelligence (Al) techniques - namely neural networks - to model training
response relationships (Hohmann, Edelmann-Nusses & Hennerberg, 2001). The results from this early work
is promising, with neural network models outperforming conventional linear models. However, these
techniques have not been used to model training response relationships in cycling.

Performance modelling for cycling presents a number of unique challenges. These include: difficulty in
objectively assessing performance, as performance in road racing involves numerous facets, including a
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strategic component (i.e. the rider with the highest average power, for example, is not necessarily the winner
of the race (Martin et al., 2001); and difficulty in objectively quantifying training load as cyclists undergo
many different types of training sessions, with varying intensities and durations. Interval sessions have
varying work to rest ratios, and varying numbers of repetitions. These factors affect how fatiguing the
training is, but do not indicate how training load, fatigue and fitness should be modelled).

QUANTIFICATION OF TRAINING LOAD

In order to model training input and performance output, training load must be quantified so it can be
used as a system input. There has been great difficulty in finding a way to effectively quantify training load
using a single term (Foster et al., 2001) .Taha and Thomas (2003) suggest that the parameters of intensity,
frequency and duration need to be taken into account.

Busso and Thomas (2006) conclude that the specificity of the activity also needs to be considered,
possibly by multifactorial models that do not simplify training loads into a single variable. This approach
would, however, create a very complicated model.

Pattern of load is another consideration which impacts on physiological cost. Accelerating to a given
speed requires greater power application and hence comes at a greater physiological cost than maintaining a
given speed. Similarly, maintaining the same power at the end of an interval comes at greater physiological
cost than maintaining that power at the beginning of an interval. No quantification models currently look at
the pattern of loading and the consequent physiological cost of different load patterns.

TRIMP Research

Banister proposed a quantifying training load using a unit of training termed a TRIMP (TRaining
IMPulse) (Banister, 1991). A TRIMP is derived from multiplying the duration of training by the relative
training intensity (measured by heart rate). A multiplying factor is applied in order to weight higher heart
rate (HR) ratios proportionally higher.

HRex — HRrest
HRmax — HRrest

Taha and Thomas’s paper (2003) describe calculating a TRIMP using currently accepted methods of
measuring heart rate intensity. An absolute measure of percentage of maximum heart rate is used, while
Banister used the Karvonen method of heart rate reserve.

TRIMP = T(min) X Xy

TRIMPs have been successfully used to model the relationship between training and performance in
many studies (e.g. Banister, Carter & Zarkadas, 1999). TRIMPs are a relatively easy measure to calculate,
and require only heart rate monitors, which are readily available and moderately priced. TRIMPs also have
the advantage of being able to be calculated across most sports and training activities, for example running
and cycling.

Heart rate is a poor method of evaluating very high intensity exercise (Foster et al., 2001). Although
TRIMPs can be calculated for a range of sports, they are not an appropriate load quantification method for
strength training, as heart rate only measures the cardiovascular load of exercise.

Heart rate is affected by many factors, which impacts on its reliability as a measure of load. Factors
which can affect heart rate include temperature, hydration, sleep, overtraining and caffeine (Jeukendrup,
2002). There are claims that the variability of heart rate impacts on the validity of quantification methods
based on heart rate (Skiba, 2008).

Rating of Perceived Exertion

Foster et al. (2001) proposed a method of quantitating training using rating of perceived exertion (RPE).
The RPE method involves getting athletes to rate their exertion for a session on Borg’s RPE scale - a scale of
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1 to 10 (Borg, 1985, cited in Foster et al., 2001). The 2001 study suggested that a TRIMP obtained from RPE
(duration * RPE) was highly correlated with a modified TRIMP calculated from heart rate zones.

RPE has been used as the input of a systems model to model training and performance in an elite
sprinter. The authors concluded that the resultant model was a potentially powerful tool for assessing the
effects of training on athletic performance (Suzuki et al., 2006).

Advantages of RPE include: it can be used across many different exercise modalities, including strength
training; it requires no equipment; and it is simple to calculate. The disadvantages of this approach include: it
is a subjective measure; it relies on individual’s memory of the session; differences in rating exist between
individuals; and some intra-subject variation exists.

Using Power to Quantify Training Load

Power is the amount of energy generated per unit of time. In cycling, it is the amount of energy
transferred to the pedals (in watts) per second. SRM power monitors are commonly used to measure power
in cycling. The SRM system provides reliable measurements of power (Gardner et al., 2004), as well as
measurements of cadence, speed and distance.

Power is a direct reflection of exercise intensity- whereas heart rate is a response to the exercise intensity
(Jeukendrup, 2002). Heart rate is affected by external factors, and also experiences a delay in responding to
changes in exercise factors. As a direct reflection of work output, power is not affected by these limitations.

Power has potential as the basis for quantifying training load. How can power data be analysed though in
order to provide us with useful information? Taking the mean power of a session is a common summary
statistic. Power output is highly variable however, so the mean does not necessarily accurately reflect the
physiological demands of a session.

Training Stress Score (TSS) was proposed by Coggan in 2002 as a load quantification method using
power. An intensity factor (IF) is used to normalise the TSS to functional threshold power (or the power that
can be maintained in a 60 minute time trial). This allows for easier comparison off TSS between athletes.

TSS has a number of advantages: it is based on power, which is a direct measurement of training
stimulus (work rate), rather than a response to the stimulus (such as heart rate); it is relatively simple to
calculate (Coggan, 2007a); and by using normalised power as the basis for the calculation, TSS applies
increased loading for high intensities, which is in keeping with physiological principles.

It can only be used, however, in sports where power can be easily measured (i.e. cycling). Training load
from cross training or strength work cannot be measured. Power monitors are also still not in widespread use,
due mainly to their relatively high cost.

The model has not been validated by any scientific studies (Coggan, 2007a). A similar algorithm
(BikeScore), however, has received some initial support from a study which demonstrated the usefulness of
the algorithm as an input function for systems-based performance modelling. Using the load quantification
technique it was possible to accurately model performance (Skiba, 2007).

Summary of Load Quantification Methods

None of the currently accepted load quantification methods consider all of the factors identified as
important in developing an accurate measure of physiological load.

The power output of a cyclist is a direct reflection of exercise intensity. Heart rate responds to the
exercise intensity. The load quantification algorithms using power weight a certain power output the same
whether it occurs at the start of a session when an athlete is fresh or at the end when they are fatigued. The
occurrence of cardiac drift (the continuous increase in heart rate that usually occurs during prolonged
moderate-intensity exercise (Jeukendrup, 2002) is cited as a criticism of using HR to measure training load
(e.g. Skiba, 2008). Maintaining the same power at the end of an effort comes at greater physiological cost
than maintaining that power at the beginning of an effort. It is proposed that HR more accurately models the
physiological cost in this situation than power.
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It is suggested that a combination of TSS, TRIMP and RPE would be powerful, giving a three
dimensional picture of 1) the work the athlete is doing 2) how they are physiologically responding to the
work they are doing and 3) how they feel while performing the work.

SYSTEMS MODELLING

Systems theory creates a mathematical model as an abstraction of a dynamic process. The system has at
least one input, and one output, which are related by a mathematical representation called a transfer function
(Busso & Thomas, 2006).

Existing Models — Impulse-Response Model

Banister (1991) proposed that the relationship between training and performance could be conceptualised
by the idea that repeated training bouts contribute to two factors- fitness and fatigue. At any point in time,
this relationship can be expressed as the formula Fitness — Fatigue = Performance. This is commonly
referred to as the impulse-response model.

In order to model this relationship, Banister (1991) considered that a proportion of the training impulse
(TRIMP) defined the fitness impulse (p(t)) and the fatigue impulse (f(t)). The TRIMP is therefore weighted
by a multiplier (initially K, = 1 for fitness and K, = 2 for fatigue). Between training bouts, fitness and fatigue
decline, modelled by an exponential decay equation. Fitness and fatigue decay at different rates- this is
modelled by relative decay time constants. Banister (1991) defines the decay constant for fitness (r)) initially
as 45 days and fatigue (r,) as 15 days.

Busso (2003) proposed a nonlinear model of the effects of training on performance, based on the
assumption that the fatigue induced by a training session varies according to the preceding training load. The
gain term for the fatigue impulse is mathematically related to training dose using a first-order filter. This
refinement of Banister’s model improved the fit of the model for previously untrained subjects trained on a
cycle ergometer. It is important to note, however, that model parameters estimated in untrained subjects may
not be representative of athletes in real situations (T. Busso, 2003; T. Busso & L. Thomas, 2006). In fact the
fit of the same model in a study using highly trained participants in real training conditions was poorer
(Thomas, 2008).

There are a number of limitations of the impulse-response model. There are claims it is overly simplified
(Busso & Thomas, 2006); it requires frequent performance measures and the models assume that a greater
amount of training leads to better performance. Previous studies have reported that the impact of training
loads on performance has an upper threshold, beyond which training doesn’t elicit further adaptations (Fry et
al., 1992; Morton 1997 cited in Hellard et al., 2006). The model has not been linked to underlying
physiological processes (Taha & Thomas, 2003); and the inability of the model to accurately predict future
performance (Taha & Thomas, 2003; Busso & Thomas, 2006).

Performance Manager

Dr Andy Coggan (2007b) developed the Performance Manager concept, an attempt to overcome some of
the limitations with the impulse-response model. His work is based on the recognition that performance is
generally greatest when training is first progressively increased to a high level, to build fitness, and then
tapered to eliminate residual fatigue.

This model eliminates the gain factors k, and k, (the gain factors are used to convert the impulse into
separate fitness and fatigue impulses). This makes the model simpler by removing the difficulty of
establishing appropriate values for the gain factors. It does, however, make the resultant fitness and fatigue
components relative indicators of changes in performance ability, rather than absolute predictors. It also
allows the substitution of simpler exponentially-weighted moving averages for the fitness and fatigue
components (Coggan, 2007b).
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The Performance Manager model has not been validated by any scientific studies. As with the impulse —
response models, it does not consider the specificity of the training.

Summary of Systems Modelling

A workable model needs to be based on simplified abstractions of the underlying complex structures.
The question is how much of the underlying structure should be incorporated into models of the relationship
between training and performance (Taha & Thomas, 2003). A balance needs to be struck between
complexity and ease of use to arrive at the greatest accuracy for the least computation cost.

Busso and Thomas (2006) concluded that in order for systems modelling techniques to be of practical
use for coaches developing training programs, new modelling strategies should be considered in accordance
with the specificity of the activity.

Existing models have four key limitations:

1. The input for the model is training load. None of the training load quantification metbods used in
the literature accurately describe physiological load for the different types of sessions a cyclist
commonly undertakes.

2. Simplification of the model input (training load) into a single variable limits the applicability of
the model in the real world

3. To estimate model parameters regular performance tests are required, however this is not practical
for professional cyclists.

4. The model parameters need to be recalculated regularly, as an athlete's fitness changes.

Strategies to address these limitations are discussed in the following sections. It is proposed that by using
artificial intelligence techniques in the modelling process, a more robust model, which will overcome some
of the identified limitations in the existing models, can be developed.

POTENTIAL MODELLING APPROACHES
Artificial Neural Networks

Neural networks are flexible, adaptive learning systems, which can find patterns in observed data
enabling the development of nonlinear systems models that can make reliable predictions (Samarasinghe,
2006). The non-linear modelling techniques of neural networks have been suggested as potentially
appropriate for use in modelling the relationship between training and performance (Hellard et al., 2006).

Silva et al. (2007) used neural network technology to create models of swimming performance. They
concluded that this approach was valid for resolving complex problems such as performance modelling.

Neural networks have been used to model the competitive performances of an elite swimmer, on the
basis of training data (Hohmann et al., 2000) . The study concluded that neural networks are excellent tools
to model and even predict competitive performances on the basis of training data. The precision of the neural
network prediction was much higher than that achieved by a conventional regression analysis.

Hohmann et al. (2001) concluded that there were a number of advantages of using neural networks,
including: the approach is more robust in handling issues with input data- such as noise or limited data; and
the neural network can model nonlinear transformation of the relationship between training and performance,
that is as the athlete’s fitness changes over time. Banister (1991) found that the constants for the model will
only serve for a period from 60 to 90 days before the process of iterative modelling and resetting the model
constants needs to be repeated.

Stochastic Optimisation

Physiological data, such as heart rate, have been successfully modelled as stochastic time series.
Stochasatic optimisation incorporates randomness in the optimisation process. It provides a good fit for
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models with incomplete parameterisation. A promising study used a stochastic optimisation method, the
Alopex algorithm, to obtain optimal parameter values for a model of heart rate response to exercise
(Zakynthinaki & Stirling, 2007). This approach may be appropriate for the conceptually similar problem of
finding the optimal parameter values for a systems model of training and performance.

SUGGESTED APPROACH

The ability of systems models to provide an accurate enough fit to allow for prediction of performance in
the real world has been questioned (Busso & Thomas, 2006; Thomas et al., 2008) . Research into modelling
techniques such as ANN have shown encouraging results (Hohmann et al., 2001) and it is suggested that
further studies are required to investigate the potential of this and other Al techniques,

It is proposed that the fit of three models, using the potential modelling approaches discussed in this
paper, be compared with the fit of the traditional impulse-response model proposed by Busso (2003), the
Control Model. The Control Model will use a single value load quantification input, such as TSS.

It is proposed that a combination of inputs be used in creating the ANN, looking at three dimensions of
training, such as the actual work performed (using power, and quantified using the TSS algorithm);
physiological response to the work performed (using HR and the TRIMP load quantification method) and
how the athlete feels completing the work using RPE (Model 1).

The second model proposed is a hybrid model, using ANN to optimise the parameters for Busso’s
impulse-response model (Model 2).

The third model proposed will use stochastic optimisation methods to optimise the parameters for
Busso’s impulse-response model (Model 3).

Comparing the fit of these three models will provide some insight into whether the use of Al techniques
has the potential to overcome the limitations of existing systems models and produce a model that has the
potential of being a useful predictor of performance.
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Abstract. The aim of this study is to investigate the potential of Artificial Intelligence techniques to
assist recruiting managers in the Australian Football League (AFL) National Draft selection process.
Currently players are selected based largely on the subjective judgement of recruiting managers, coaches
and scouts. The major source of information for making decisions in the AFL National Draft will always
be recruiting staff observing games. However there is a large amount of untapped data available which
has the potential to improve the decision making process. This includes body composition, flexibility,
anaerobic and aerobic power, visual tests, TAIS (Test of Attentional and Interpersonal Style) tests,
psycho-motor tests, medical and psychological reports. Full player profiles are also provided on each
player which include assessments on numerous skills and personal attributes. Extensive subjective
evaluations on each player describing strengths, weaknesses, skills etc, have been written by previous
coaches. This study uses Multi-layer Perceptrons (MLPs) to investigate the relationship between the
player’s data and their rating. A player rating system has been devised, and a rating determined for each
player who has been through the AFL National Draft and has been in the AFL system for at least three
years. Preliminary results from this study suggest that the extra data available to recruiting staff may have
the potential to assist in improving the success of selecting players in the AFL National Draft.

Keywords: AFL National Draft, Artificial Intelligence, Multi-layer Perceptrons

INTRODUCTION

Numerous studies have reported a positive relationship between certain characteristics for junior elite
players and future success in their respective sports. Pyne et al. (2005) investigated the relationships between
anthropometric and fitness tests from the AFL Draft camp and the career progression of these players in AFL
Football. The results demonstrated that the 20 m sprint, jump, agility and shuttle run tests are a factor with
the career progression of AFL footballers. Tschopp et al. (2003) conducted a study to evaluate the predictive
value of physiological, medical, psychological, anthropometric, social and personal characteristics for
medium term success in junior elite soccer players. Height, isokinetic strength of the knee flexors and age at
entry to the football club were statistically significant predictors. The study also concluded that the
implementation of a multidisciplinary assessment of elite junior players would be most effective at age 15
due to greater homogeneity with increasing age. A study involving players competing in the Australian under
16 basketball championships demonstrated that the elite players could be distinguished from others on a
number of anthropometric (height, sitting height, arm span) and physiological variables (speed, agility,
vertical jump, basketball throw, aerobic endurance). This research also demonstrated that the relationship
between the anthropometric and physiological variables and the player status was position dependent (Hoare,
2000).

The US National Football League Combine is the NFL’s equivalent to the AFL National Draft. Players
are tested on a variety of measures and the results are presented to all clubs to assist in the drafting process.
McGee and Burkett (2003) conducted a study to assess the relationships between the player test results and
draft status and demonstrated that the Combine results can be used to predict accurately the draft status of
certain positions (running backs, wide receivers and defensive backs). Other positions were not accurately
predicted. The research findings could be used to determine which position an athlete is most suited to and in
which position an athlete is most likely to be successful. The study also found that the first and second round
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drafted athletes were taller, heavier and faster over 10, 20 and 40 yards as well as scored higher in agility
runs, vertical and broad jumps. McDavid (1977) devised a test battery for American football players using
both football skills and motor ability test items. The results demonstrated that the tests had discriminatory
power and indicated that football potential may be predicted. The tests could be used as a screening device
for football potential as well as a technique to identify relative strengths and weaknesses in players.

The inclusion of a skill assessment component to complement the other forms of player data is seen as
important to gain an overall view of potential players in the AFL National Draft. This is supported by
research in other sports which indicate the importance of skill assessment in the talent identification process.
Elferink-Gemser et al. (2004) found that the most discriminating variables between elite and sub-elite junior
hockey players were dribbling skills, tactical knowledge and motivation. Williams and Reilly (2000) suggest
that identifying talent for young soccer players is best achieved on skill and ability rather than physical size.
They state that the prediction of future elite players from anthropometric measurements alone may be
unrealistic in younger age groups because performance could be affected by the players’ rate of physical
growth and maturation. NFL coaches and assistants conducted skill drills which were filmed at the NFL
Combine. These drills were specific to the individual playing positions and clubs received a video of each
player (Sheehan, 2007). Skill assessment has been achieved in the AFL by subjective analysis of players by
scouts and coaches during match play. The use of tests to evaluate skills for talent identification in the AFL
has not been favoured (Turnbull, 2007).

The aim of this study is to investigate the applicability of MLPs to predict the future playing ability of
players in the AFL National Draft from all forms of data available including anthropometric, psychological
and skill assessment.

ARTIFICIAL INTELLIGENCE

Artificial Neural Networks (ANNs) are very loosely modelled on the human brain. Multi-layer
Perceptrons (MLPs) are a type of ANN that have been used because of their pattern matching ability in
complex problem spaces. An MLP can be conceptualized as a black-box, non-linear model, where a
collection of inputs (attributes) are presented to the MLP and one or more results (outputs) are produced.
MLPs' use a supervised learning approach, learning from training examples, adjusting weights to reduce the
error between the correct result and the result produced by the network. MLPs endeavour to determine a
general relationship between the inputs and outputs provided (Smith, 1993). Once trained MLPs can be used
to predict outputs based on input data alone. An example of a Multi-layer Perceptron is shown in Figure 1.
Player attributes such as 3km and shuttle run performance are supplied to the MLP as inputs, and an output
produced which is a prediction of the player's rating.

Learning
Inputs Machine Output

3km Run —¥|
Shuttle Run ——¥,
TAIS Test —¥,
Clean Hands —¥| MLP — Player Rating
Kicking ——¥|

Sit and Reach —¥|
Injuries —¥|

Figure 1: Multi-layer Perceptron as a black-box approach.
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EXPERIMENTAL DESIGN
Player Data and Ratings

The player data set includes body composition, flexibility, anaerobic and aerobic power, visual tests,
TAIS (Test of Attentional and Interpersonal style) tests, psycho-motor tests, skill assessments and subjective
assessments on strengths, weaknesses and personal attributes. In total 58 input attributes and 310 player
examples were used in this study. The 58 inputs were selected as they were the attributes tested across all
years between 1999 to 2004. Skill assessments such as marking, kicking and clean hands were assessed
numerically by coaches. Other attributes such as big game ability, coachability and aggressiveness were
quantified by the use of a set of criteria to analyse the coaches written reports for each player.

Players in the draft from 1999 to 2004 were given a rating out of 10, where the rating indicates their
value in the game today. The ratings used in this study are the average of two subjective assessments from
people experienced in the AFL drafting process. Table 1 was used as a guide to assist in this assessment.
Players were required to be in the AFL system for at least 3 years for an assessment to be made of their
ability. As a result players from the 2005, 2006 and 2007 National Draft were excluded from the current
study.

Table 1: Player ratings and descriptions

Rating Description
>8 Elite AFL player
7 Very good AFL player
6 Good AFL player
5 Plays a majority of games in the seniors (> 80%) and is regarded in the top 22 in the

team
4 Just outside of the top 22 in the team. Plays < 80% of games in the seniors
3 Plays a majority of games in the reserves. Not thought of as a regular senior AFL

player at this stage.

2 Unlikely to become a regular AFL player. Minimal or no AFL games
1 Drafted but no impact
0 Not drafted

The numbers of players in each ratings group are shown in Table 2 below.

Table 2: Frequency of players for each ratings group

Rating  Number of players

>1 310
>5 121
>6 74
>17 33
>8 11

A second set of ratings were used for the classification experiments. The classes are outlined in Table 3.

Table 3: Classification classes used for experimentation

Class Description Rating
GOOD Range from: plays the majority of games in the seniors to elite >3
AVERAGE Range from: not a regular senior player to no impact at all <5
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The correlation between the rating and player attributes was investigated. The top 5 correlations were:
vision (-0.191), big game ability (-0.170), shuttle (-0.164), durability (-0.152) and clean hands (-0.147).
Shuttle was the only attribute in the top five correlations that wasn't in the skill category.

The authors are currently developing a ratings system which will combine the subjective ratings of three
experts together with club best and fairest votes and games played to produce a more robust player rating
system. However it is acknowledged that there is no perfect ratings system.

MLP Parameters

A training set and a testing set were used in all experiments. The training set consisted of player data
from the 1999 to 2002 National Drafts (214 examples), and the testing set consisted of data from the 2003
and 2004 National Drafts (96 examples). The MLPs were trained using the parameters specified in Table 4
below. The parameters were derived by conducting a series of trials involving varying parameters and
assessing the effect on the MLP’s output. Once trained the MLP’s performance was assessed on the testing
set to provide a measure of performance on unseen data.

Table 4: MLP parameters

Parameter Value
Architecture 58-5-1
) Learning rate 03
Momentum 0.2
Epochs 2000

RESULTS AND DISCUSSION

Two sets of experiments were conducted in this study. The first set of experiments, called the Regression
Experiments, use a numeric rating between 1 and 10 as the MLP’s output. The second set of experiments
referred to as the Classification Experiments uses two rating classes, GOOD and AVERAGE as the output.

The results for the MLPs were compared with the performance of the recruiting managers (RMs) for the
draft selection process. For this to be achieved the following assumption was made. The draft order for each
year can be viewed as a measure of the accumulation of knowledge from recruiting managers across the 16
AFL clubs, even though each club works independently. The RMs’ predictions used in this study are based
on the draft order for each year.

Regression Experiments

The results in Table 5 show the performance of recruiting managers and the performance of the MLP on
the testing data. The correlations are calculated as an average across the two years of the testing data (2003
& 2004).

Table 5: Correlations for RM versus rating and MLP versus rating for the testing set.

Correlation
RM v Rating -0.43
MLP v Rating -0.23

The result presented for the recruiting managers is the correlation between the actual draft order for a
particular year and the current rating for a player. It would be expected that a higher draft order (i.e.: 1, 2, 3
etc) would result in a higher rating and vice versa, resulting in a negative correlation. The MLP output a
rating for each player in the testing set and this was converted to a draft order for both the 2003 and 2004
draft. The result presented for the MLP is the correlation between the MLP's predicted draft order and the
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current rating for each player. Both the RM and MLP correlations were negative as expected, however the
recruiting managers clearly outperformed the MLPs’ predictions.

Classification Experiments

The classification experiments used two player classes based on their rating. The classes are outlined in
Table 3. To allow a comparison to be made between the MLPs’ classification performance and the recruiting
managers, the following reasoning has been used. An analysis of the draft data indicates that on average
approximately 20 players each year achieved a rating of 5 or above. This information was used as the basis
to develop an RM classification for each player in the draft. As previously stated, the draft order each year is
taken as an estimation of the accumulation of knowledge from the recruiting managers across the 16 clubs.
Therefore if each player selected in the top 20 is assigned a GOOD rating, and players selected below 20 an
AVERAGE rating, this may be used as an estimation of the RM’s classification.

Table 6 shows the performance of the recruiting managers and the MLP across the entire testing set,
while Table 7 shows the respective percentage correct for GOOD predictions. <

Table 6: RM and MLP predictions on the testing set.

Scenario Percentage Correct
RM predictions 68.1%
MLP predictions 60.6%

Table 7: Performance of RMs and MLPs GOOD predictions on the testing set.

Scenario Percentage Correct
RM predicts GOOD 45.0%
MLP predicts GOOD 37.2%

The results in both cases indicate that the recruiting managers clearly outperform the MLP. The RMs’
predictions are 12.4% higher than the MLP on the entire testing set, and 20.1% higher for GOOD
predictions. This would be expected due to the extensive networks that clubs have developed in the
recruiting areas, and as a result, the vast amount of knowledge held on players in the draft that is not
available to the MLP.

Further analysis of the GOOD predictions shows that while there was a certain amount of disagreement
between the RMs’ and the MLPs’ classification, there were also numerous times when they agreed. Table 8
shows the percentage correct for GOOD predictions where the recruiting managers predicted correctly, the
MLP predicted correctly and both predicted correctly.

Table 8: GOOD predictions on the testing set: 3 scenarios.

Scenario Percentage Correct
RM predicts GOOD, MLP disagrees 33.0%
MLP predicts GOOD, RM disagrees 19.1%
RM and MLP predict GOOD 54.6%

The results show that the RM clearly outperforms the MLP on the percentage correct of GOOD
predictions. In the cases where the RM and the MLP both agree on their GOOD prediction, the percentage
correct was 54.6%. This compares favourably with the results in Table 7 where the RM predictions are 45%
correct and the MLP 37.2% correct for GOOD predictions. While the low numbers used in these experiments
make it difficult to draw conclusions, it is interesting to note that on their own MLPs do not approach the
success achieved by the recruiting managers, however, they may have potential to be used as a secondary
source of information to confirm or improve a decision.
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CONCLUSION

The experiments conducted in this research are preliminary in nature and it is difficult to derive any
definite conclusions from the results. The draft selection process is a very difficult task as evidenced by the
success rate of the draft predictions. The recruiting managers largely base their decisions on a subjective
analysis of players by their large network of recruiting staff and scouts, with the use of other forms of data of
secondary importance.

The results from this research indicate that the recruiting managers clearly outperform the MLP in the
regression and classification experiments. This would be expected as the recruiting managers commonly
have information on players over a number of years including numerous subjective opinions from games on
skills and fitness, performance in key games, family background, improvement over time etc, including all of
the data available to the MLP. In comparison the MLP is limited to data on body composition, flexibility,
anaerobic and aerobic power, visual tests, TAIS tests, psycho-motor tests, skill assessments and subjective
assessments on strengths, weaknesses and personal attributes. While all of the tests used including the
fitness, visual and psycho-motor tests provide an excellent snapshot of a player’s profile, the skill assessment
is a difficult component to accurately capture.

As each team is restricted to a few draft picks per year it is essential that RMs make the best choices. The
results presented suggest that MLPs may have potential in supporting the decision making process for RMs.
This is supported by the results showing that the recruiting managers alone were 45.0% correct with their
GOOD predictions, whereas when the recruiting managers and the MLP both agreed on a GOOD prediction
the percentage correct increased to 54.6%. Further research is being conducted in this area.
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Abstract. Bodysurfing has been a popular summer pastime in Australia, New Zealand and other parts
of the world for more than one hundred years. The most difficult aspect when learning the associated
skills of bodysurfing is to launch oneself onto the wave just as it is about to break and become a moving
surf front. The skill is easier to acquire when standing on a sandbank, but is more difficult when trying to
launch oneself in deep water onto the wave just as it is about to break. A mathematical model of catching
a breaking wave, by swimming onto it, is presented here. It will be validated by showing that when the
bodysurfer does not swim for the wave it will pass through the bodysurfer’s floating position and will not
be caught. On the other hand if the bodysurfer is swimming for the wave and it reaches the bodysurfer
just as it is about to break, the person may be accelerated up to the wave speed because of the forward
drag induced by the water particle velocity in the crest of the wave. This paper does not consider the
dynamics of surfing down the sloping front of a spilling wave (roller) nor the technique used to ride a
plunging wave (dumper), but concentrates on modelling the act of catching either type of wave.
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INTRODUCTION

Bodysurfing is the art of catching and riding a broken surf front without the aid of any craft. The most
difficult part of the technique is to launch onto the wave at the correct moment, so that the bodysurfer can
reach the speed of the wave and then be carried along in the turbulence of the surf front. It should be noted
that once a wave has broken it is extremely difficult for even the strongest swimmer to catch the wave in
deep water, but it is easy for anybody to catch the wave when standing on a shallow sandbank. When a
shallow sandbank is present, bodysurfers can achieve a sufficient launching speed by pushing off the
sandbank into a horizontal position using a strong thrust of their legs. Now the wave speed near ocean
shorelines is regularly faster than the swimming speed of even the fastest human swimmer and so, in deeper
water beyond the wave-breaking region, no swimmer can catch a wave. The relevant wave speed necessary
to catch a wave seems only to be achieved by a swimmer just as the wave is about to break. The mechanism
for this has not been completely understood, and no physical model has been put forward to explain why a
human can actually catch and ride a wave unassisted by any floating device. It is the aim of this paper to
provide a mathematical and physical model for catching a wave. A model for riding a wave will be addressed
later. Consequently the mechanism for assisting bodysurfers to swim onto and catch a wave must lie in the
forces available as the wave is about to break, and not before nor afterwards.

THE PHYSICAL MODEL

As ocean waves approach a sloping beach they grow in height, lose speed and eventually the front face
of the wave becomes so steep that it breaks to become a turbulent surf front of tumbling water and entrapped
air (Peregrine 1983; Battjes 1988). For traveling ocean waves it is known that the water particles within each
wave move forwards at the crest and backwards in the trough. Research by Peregrine et al. (1980) has shown
that the water particles at the crest of a breaking wave are travelling at a much faster speed W than the wave
speed U. Computations show that the value of W could be as much as 2U.

To catch a wave in deep water, bodysurfers have to wait in the wave-breaking region and, with suitable
timing, accelerate themselves from rest to try to match the wave speed U at the position where the wave

151



starts to break. Therefore the mathematical condition that the bodysurfer will catch the wave will be that his
or her forward speed at the breaking crest will equal U.

The propulsive forward swimming force generated by the bodysurfer in still water is denoted by P
newtons. If his or her maximum swimming speed is S m/s then

P-kS2=0

where k is the bodysurfer’s resistance coefficient in still water when swimming. The air drag on the small
part of the bodysurfer’s anatomy above the water surface can be considered to be relatively insignificant
compared with the water drag on and below the surface.

Most competent swimmers cover 50 m in times ranging from 25 s (very fast) to 60 s (slow and casual).
Thus S varies from 0.8 to 2 m/s, and a typical value for the purpose of this paper will be taken as 1.5 m/s. For
a swimmer of mass 75 kg, a typical value for k is 30 kg/m (Bellemans, 1981). This produces an average
propulsive force P equal to 62.5 newtons. As the front of any wave passes through a surfer’s position, the
water particle velocity w on the front will change from a negative value at the foot of the wave, through zero
part-way up the face, to a maximum W at the crest. At some stage the water particle velocity w will match
the swimmer’s forward velocity S, and there will be no forward or backward drag on the swimmer at all. Let
this instant denote the initial time t = 0. The position of the wave crest at that instant is chosen as the origin
for a 2-dimensional co-ordinate system with Ox in the direction of the wave’s velocity and Oy vertically

upwards (Figure 1). Let the position of the bodysurfer initially be (x,, y,) with a typical value of x | being
2m ahead of the crest. The time of interest for this investigation of the dynamics of catching a wave is
therefore 0< t <t,, where t,= x,/ (U-S) is the time for the crest to reach the bodysurfer with U assumed
constant for this short interval of time.

O P
mg

Fgmre 1

The forces on the swimmer at any time t between starting the swim and when the crest overtakes him or
her are

(1) weight (mg) vertically down,

(ii) buoyancy (B) vertically upward,

(11i) propulsive force (P) towards the shoreline,

(iv) drag (D) assisting the swimmer because the water is moving faster than the swimmer. This drag

is at an angle to the horizontal but near the crest the main thrust of the water particles will be towards the
shoreline.
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Resolving these forces in the horizontal and vertical directions for Newton’s laws of motion yield

md?x/dt> =P+D cosy 1)

md?y/dt> =B+Dsiny -mg Q)
where | denotes the angle that the drag makes with the horizontal.

For the time interval under consideration, it can be assumed the swimmer is near the crest and that the
horizontal component of the swimmer’s velocity is much greater than the vertical component. Thus time
derivatives with respect to y are much smaller than time derivatives with respect to x, and the angle y will

be very small. Hence equation (2) can be approximated by
0=B-mg

showing that the surfer’s weight is approximately balanced by the buoyancy force. Using the same
reasoning, an approximate version of equation (1) is

md?x/dt? =P +k (w-dx/dt)> (3)

showing that the bodysurfer is thrust forward by the water particle drag in the region of the wave crest.
Equation (3) can be used to predict whether or not the bodysurfer catches the wave.

ANALYSIS

For the period of time from when the swimmer’s speed matches the water particle speed to when he or
she is overtaken by the crest, the value of w ranges from dx ,/dt to a maximum W (>U). This is modelled

linearly as
w = dx,/dt + (W-dx,/dt) t/ t,
where t, is the time when the crest reaches the swimmer. Thus equation (3) is now
md?x/dt® =P+k[(W-dx,/dt)t/t,+ dx,/dt—dx/dt]’
With z= (W-dx,/dt) t/ t, + dx,/dt — dx/dt, the equation of interest becomes
m [(W-dx,/dt)/t, -dz/dt] = P+kz®
or
(m/k)dz/dt=A%-2z°
where A% = (mW-m dx o/dt - Pt )/(k t,). Integration of the reciprocal of this equation yields

A+z

kt/m = 1/(2A) In
A-z

+C

When t=0, z=0 and so C=0. Thus
z= A tanh (A kt/m)

However the expression of interest is the speed of the bodysurfer at the crest, namely dx _/dt, which occurs

when t =t,. Thus

dx ,/dt=W - A tanh (A k t,/ m) “)
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CALCULATIONS
To see if the bodysurfer can catch the wave, it remains to determine from equation (4) whether dx , /dt
reaches the value of U for typical values of the parameters used.

Consider first of all the case P = 0 when the bodysurfer does not swim for the wave at all. Then A = \(m
W/(k t;)) and dx,/dt = 0. Typical values of the parameters are m = 75, k = 30, t,= 1.33 and U = 3.0 (6
knots approximately). Note that U is faster than any human swimmer can achieve unassisted.

Calculations based on equation (4) in the present model are shown in Table 1. They show that even
when the water particle speed (W) at the crest is double the wave speed (U), the swimmer cannot possibly
catch the wave if he or she remains at rest (P=0) as the wave approaches. Practical bodysurfing verifies this.

However for P = 62.5, when the bodysurfer attempts to swim for the wave, it is seen also from Table 1
that he or she will catch it in this case if W = 4.4 or more.

Table I: (U=3.0,t; =1.33)

w dx /dt (P =0) A dx /dt (P = 62.5)
3.2 0.91 1.05 2.67
3.4 1.01 1.22 2.71
3.6 i 1.11 1.36 2.75
3.8 1.22 1.49 2.81
4.0 1.34 1.61 2.88
42 1.46 1.73 2.95
4.4 1.58 1.83 3.02
4.6 1.71 1.93 3.11
4.8 1.84 2.03 3.19
5.0 1.97 2.12 3.28
5.2 2.10 2.20 3.38
5.4 2.24 2.29 3.48
5.6 2.38 2.37 3.58
5.8 2.52 245 3.69
6.0 2.66 2.52 3.80

The calculations were repeated with the swimmer reaching water particle speed when only one metre
ahead of the position of the wave crest, instead of two metres. For this situation the swimmer has probably

started too late and the calculations show that the bodysurfer cannot catch this wave for